
Linear Algebra Assignment: Homework

Christian Zhou-Zheng

1 Matrix Operations

Reference: a =

(
1
0

)
, b =

(
1
i

)
, H = 1√

2

(
1 1
1 −1

)
, Y =

(
0 i
−i 0

)
.

Part 1 concerns review of matrix multiplications and the definition of unitary
matrices, used to represent quantum states.

� Ha = 1√
2

(
1 1
1 −1

)
·
(

1
0

)
= 1√

2

((
1 1
1 −1

)
·
(

1
0

))
= 1√

2

(
1 · 1 + 1 · 0

1 · 1 + (−1) · 0

)
= 1√

2

(
1
1

)
=

(
1√
2
1√
2

)

� Y b =

(
0 i
−i 0

)
·
(

1
i

)
=

(
0 · 1 + i · i
−i · 1 + 0 · i

)
=

(
−1
−i

)

� HT =

(
1√
2

1√
2

1√
2
− 1√

2

)T

=

(
1√
2

1√
2

1√
2
− 1√

2

)
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� Y T =

(
0 i
−i 0

)T

=

(
0 −i
i 0

)

� H =

(
1√
2

1√
2

1√
2
− 1√

2

)

=

(
1√
2

1√
2

1√
2
− 1√

2

)

� Y =

(
0 i
−i 0

)
=

(
0 −i
i 0

)

� For the next two, I use the definitions of H and Y from above.

� H† = H
T

=

(
1√
2

1√
2

1√
2
− 1√

2

)T

=

(
1√
2

1√
2

1√
2
− 1√

2

)

� Y † = Y
T

=

(
0 −i
i 0

)T

=

(
0 i
−i 0

)

� For the next two, I use the definitions of H† and Y † from above.

� H†H =

(
1√
2

1√
2

1√
2
− 1√

2

)
·

(
1√
2

1√
2

1√
2
− 1√

2

)

=

(
1√
2
· 1√

2
+ 1√

2
· 1√

2
1√
2
· 1√

2
+ 1√

2
· − 1√

2
1√
2
· 1√

2
− 1√

2
· 1√

2
1√
2
· 1√

2
+ 1√

2
· 1√

2

)
=

(
1
2 + 1

2
1
2 −

1
2

1
2 −

1
2

1
2 + 1

2

)
=

(
1 0
0 1

)

2



� Y †Y =

(
0 i
−i 0

)
·
(

0 i
−i 0

)
=

(
0 · 0 + i · (−i) 0 · i + i · 0
−i · 0 + 0 · (−i) −i · i + 0 · 0

)
=

(
1 0
0 1

)

� a · b =

(
1
0

)
·
(

1
i

)
=

(
1
0

)
·
(

1
i

)
= 1 · 1 + 0 · i
= 1

� (Extra Credit) Show that unitary matrices preserve inner products.

Let U be a unitary matrix such that U†U = I, the identity matrix. Then,
for two arbitrary vectors ~v1, ~v2 let ~w1 = U ~v1 and ~w2 = U ~v2. Then:
~w1 · ~w2 = (U ~v1) · (U ~v2)
= (U ~v1)†(U ~v2)

= (U† ~v1
†)(U ~v2)

= (U†U)(~v1
† ~v2)

= I(~v1 · ~v2)
= ~v1 · ~v2
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2 Linear Basis (Extra Credit)

2.1 Part (a)

Give examples of:

� A linear space: R2

� A set of linearly dependent vectors living in this space:

(
3
2

)
,

(
2
5

)
,

(
0
−1

)
� A set of linearly independent vectors living in this space:

(
3
0

)
,

(
0
5

)
� A basis for this vector space:

(
1
0

)
,

(
0
1

)

2.2 Part (b)

Which of the following sets in R2 form a basis?

�

{(
1
0

)
,

(
0
2

)}
: Yes, since they are orthogonal, as

(
1
0

)
·
(

0
2

)
= 1 ·0+0 ·2 =

0, and therefore must be linearly independent. We can also see that no
scalar quantity can multiply the 0 in the second vector to make it equal
to the 1 in the first, or vice versa for the 2 in the second vector.

�

{(
0
1

)
,

(
0
−1

)}
: No, it is easy to see that

(
0
−1

)
= −

(
0
1

)
.

�

{(
0
1

)
,

(
1
0

)
,

(
1
1

)}
: No, as we immediately see there are three vectors in

this set - the most that can form a basis is dim(R2) = 2. It’s also obvious
that the third is the sum of the first two.

�

{(
1
0

)
,

(
1
1

)}
: Yes, surprisingly! While they are not orthogonal, they are

linearly independent, as we can see that no scalar quantity exists that can
multiply the 0 in the first vector to make it equal to the 1 in the second -
neither vector can be written as a linear combination of the other.

2.3 Part (c)

Write the elements of the canonical basis, ~e1 =

(
1
0

)
and ~e2 =

(
0
1

)
, as linear

combinations of ~u =

(
1
1

)
and ~v =

(
1
−1

)
. Find the projections of ~e1 and ~e2
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onto ~u and ~v.

� ~e1 = 1
2 (~u + ~v)

� ~e2 = 1
2 (~u− ~v)

� We use outer products to determine projections, but we need to normalize

~u and ~v first: their norms are both
√

2, so ~un =

(
1√
2
1√
2

)
and ~vn =

(
1√
2

− 1√
2

)

� |u〉〈u| =

(
1√
2
1√
2

)
·
(

1√
2

1√
2

)
=

(
1
2

1
2

1
2

1
2

)
|v〉〈v| =

(
1√
2

− 1√
2

)
·
(

1√
2
− 1√

2

)
=

(
1
2 − 1

2
− 1

2
1
2

)

� ~e1 onto ~u:

(
1
2

1
2

1
2

1
2

)
·
(

1
0

)
=

(
1
2
1
2

)

� ~e1 onto ~v:

(
1
2 − 1

2
− 1

2
1
2

)
·
(

1
0

)
=

(
1
2
− 1

2

)

� ~e2 onto ~u:

(
1
2

1
2

1
2

1
2

)
·
(

0
1

)
=

(
1
2
1
2

)

� ~e2 onto ~v:

(
1
2 − 1

2
− 1

2
1
2

)
·
(

0
1

)
=

(
− 1

2
1
2

)

2.4 Part (d)

For what value(s) of x will the following set of vectors not form a basis for R3?
For those values, which elements of R3 cannot be written as a linear combination
of the vectors?


1

0
x

0
1
x

1
x
0

 (1)

We clearly see x = 0 makes this set not form a basis - there are no components
in the third dimension that can make anything, so all vectors with a third (z)
component equal to 0 in R3 cannot be written as a linear combination when
x = 0. We can also see that x = −1 makes the set not form a basis, as the first
vector is the sum of the last two, and therefore is linearly dependent on them.
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However, can we prove this more rigorously? Using the knowledge (which
admittedly wasn’t in the text) that we can check for linear independence by
taking the determinant of the matrix formed by the vectors, we can gain exact
values for x that make this set not form a basis. Strictly, when the determinant is

zero, the set is linearly dependent, since the product

1 0 x
0 1 x
1 x 0

ab
c

 =

0
0
0

 has

solutions for nonzero a, b, and/or c (coefficients of a system of linear equations

that relate the vectors). The determinant

∣∣∣∣∣∣
1 0 1
0 1 x
x x 0

∣∣∣∣∣∣ = 1(1 · 0 − x · x) − 0(0 ·

0− x · x) + 1(0 · x− 1 · x) = −x2 − x = −x(x + 1), and setting this equal to 0
yields x = 0,−1 as expected. No other values of x will produce a determinant
of 0, and therefore no other values of x will make the set not form a basis; our
initial intuition covered all cases!

In addition, while we mentioned the vectors that cannot be written as a linear
combination of this set for x = 0 (that is, all vectors with a nonzero third
component), we never mentioned the vectors that cannot be written as a linear
combination of this set for x = −1. Since the first vector is the sum of the latter

two, we can remove it and only check the remaining two:


 0

1
−1

 1
−1
0

.

Thus, all vectors that can be written as a linear combination of these two vectors

can be represented as a

 0
1
−1

+b

 1
−1
0

 =

 0
a
−a

+

 b
−b
0

 =

 b
a− b
−a

, so any

vector that cannot be represented as

 b
a− b
−a

 for a, b ∈ R cannot be written as

a linear combination of this set of vectors for x = −1. For instance,

1
1
1

 fails.

2.5 Part (e)

Is a union of linear subspaces necessarily a linear subspace itself?

By my understanding of sets and unions, not necessarily. For instance, take the
linear subspaces E0 and E1, the spans of the members of the canonical basis in

R2, such that E0 =

{
~v =

(
k
0

)
| k ∈ R

}
and E1 =

{
~v =

(
0
k

)
| k ∈ R

}
.

The union of these two linear subspaces W = E0 ∪ E1 is not itself a linear
subspace, as it contains only the vectors along each axis, but not the sums of
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any two vectors on different axes: for instance, W contains both

(
1
0

)
and

(
0
1

)
,

but not

(
1
0

)
+

(
0
1

)
=

(
1
1

)
. Since W is not closed under addition, it is not a

linear subspace itself.

2.6 Part (f)

Let V be a subspace of Rn. Suppose that S = {v1, v2, . . . , vn} is a spanning set
of V . Prove that any set of n + 1 or more vectors in V is linearly dependent.

Let our set of interest have cardinality r such that r > n. Then for every k such
that 1 ≤ k ≤ r, k ∈ Z, we decompose ~vk into components as follows:

~vk =


v1k
v2k
...

vnk

 (2)

Using the same knowledge of determinants as in Part (d), we create a set of scalar
coefficients (not to be confused with the coefficient matrix) c1, c2, . . . , cr ∈ R
such that c1 ~v1+c2 ~v2+· · ·+cr ~vr = ~0 and set up the matrix equation (representing
a system of linear equations):

v11 v12 . . . v1r
v21 v22 . . . v2r
...

...
...

vn1 vn2 . . . vnr



c1
c2
...
cr

 =


0
0
...
0

 (3)

Like in part (d), if any member of the second matrix is nonzero, the set is
linearly dependent. However, note that at least one solution must exist - the
trivial solution, c1 = c2 = · · · = cr = 0.

Considering that this matrix multiplication represents a set of linear equations
(for example, multiplying the first row gives v11c1 + v12c2 + · · · + v1rcr = 0),
we notice that there are more unknowns (r) than there are equations (n), since
r > n. Thus, there are either no solutions or infinite solutions.

However, we already know at least one solution must exist; therefore, there are
free variables in the system where manipulating them makes no change to the
solution, and there are infinite solutions. Since these manipulations correspond
to changing a term in the second matrix, this means there can be nonzero
members of the second matrix, thus the set is linearly dependent.
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