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1 Measurement Example

The ”computational basis” of qubit states is given by |0〉 =

(
1
0

)
and |1〉 =

(
0
1

)
.

Another basis is given by |α〉 = 1√
2

(
1
i

)
and |β〉 = 1√

2

(
1
−i

)
.

1.1 Part (a)

Check that both bases are orthonormal.

� |0〉 · |1〉 =

(
1
0

)
·
(

0
1

)
= 0

� |α〉 · |β〉 = 1√
2

(
1
i

)
· 1√

2

(
1
−i

)
= 1

2

(
1
i

)
·
(

1
−i

)
= 1

2 (1− i2) = 0

� ||~0|| =
√
|0|2 + |1|2 =

√
1 = 1

� ||~1|| =
√
|1|2 + |0|2 =

√
1 = 1

� ||~α|| =
√∣∣∣ 1√

2

∣∣∣2 +
∣∣∣ i√

2

∣∣∣2 =
√

1
2 + 1

2 =
√

1 = 1

� ||~β|| =
√∣∣∣ 1√

2

∣∣∣2 +
∣∣∣− i√

2

∣∣∣2 =
√

1
2 + 1

2 =
√

1 = 1
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1.2 Part (b)

Say our qubit was initially in state |0〉 and was measured in the basis of |α〉 and
β〉. What will the state of the qubit be immediately following the measurement?
What are the probabilities of the outcomes?

We apply Born’s rule: the state can collapse to either |α〉 with probability
|〈α|0〉|2, or |β〉 with probability |〈β|0〉|2. Calculating these two gives |〈α|0〉|2 =∣∣∣∣∣
(

1√
2
i√
2

)
·
(

1
0

)∣∣∣∣∣
2

=
∣∣∣ 1√

2

∣∣∣2 = 1
2 , and |〈β|0〉|2 =

∣∣∣∣∣
(

1√
2

− i√
2

)
·
(

1
0

)∣∣∣∣∣
2

=
∣∣∣ 1√

2

∣∣∣2 = 1
2 .

Therefore, the state of the qubit will be |α〉 with probability 1
2 or |β〉 with

probability 1
2 .

1.3 Part (c)

After the first measurement, the qubit is measured again in the basis |0〉, |1〉.
What are the probabilities of the two outcomes now?

We consider all four possibilities: the qubit is measured in |α〉 then |0〉, |α〉 then
|1〉, |β〉 then |0〉, and |β〉 then |1〉. We calculate the probability of each of these
four possibilities, multiply each by the corresponding one of the first two, and
sum them up.

� |〈0|α〉|2 =

∣∣∣∣∣
(

1
0

)
·

(
1√
2
i√
2

)∣∣∣∣∣
2

=
∣∣∣ 1√

2

∣∣∣2 = 1
2

� |〈1|α〉|2 =

∣∣∣∣∣
(

0
1

)
·

(
1√
2
i√
2

)∣∣∣∣∣
2

=
∣∣∣ i√

2

∣∣∣2 = 1
2

� |〈0|β〉|2 =

∣∣∣∣∣
(

1
0

)
·

(
1√
2

− i√
2

)∣∣∣∣∣
2

=
∣∣∣ 1√

2

∣∣∣2 = 1
2

� |〈1|β〉|2 =

∣∣∣∣∣
(

0
1

)
·

(
1√
2

− i√
2

)∣∣∣∣∣
2

=
∣∣∣− i√

2

∣∣∣2 = 1
2

We see that the probability of each outcome is equal; multiplying each by the 1
2

original probability (of it collapsing into either |α〉 or |β〉) and summing them
up gives 1

4 + 1
4 + 1

4 + 1
4 = 1 for total probability, as expected. The probability of

it ending in state |0〉 is 1
4 + 1

4 = 1
2 , and state |1〉 also has probability 1

4 + 1
4 = 1

2 .
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2 Distinguishing Between States

Two boxes each produce a stream of qubits. Box A produces qubits in the state
|Ψ〉 = 1√

2
(|0〉 + i|1〉). Box B randomly produces qubits in states |0〉 and |1〉,

each with probability 1
2 . We have one of the boxes, but do not know which it

is. Describe an experiment on the qubits that can tell the difference between
box A and box B. Can you tell the difference between the boxes by examining
only one of the qubits?

It’s immediately obvious that measuring the qubits in the |0〉, |1〉 basis will not
distinguish between the two boxes - Box B produces each with probability 1

2 ,
and some quick calculations show Box A produces each with probability 1

2 as
well. This is due to the inherent randomness in each; however, they are different
types of random! Box A is quantum randomness, a superimposed state, whereas
Box B is classical randomness, like a coin flip.

If we measure in a different basis system, perhaps we’ll see something different.
We notice that |Ψ〉 = |α〉, so what if we measure in the |α〉, |β〉 basis? The qubits
from Box A will always collapse to |α〉, whereas the qubits from Box B will

collapse to |α〉 with probability 1
2

(
|〈α|0〉|2 + |〈α|1〉|2

)
= 1

2 (
∣∣∣ 1√

2

∣∣∣2 +
∣∣∣− i√

2

∣∣∣2) =
1
2 (1) = 1

2 and |β〉 with (by similar math) probability 1
2 . Therefore, if we measure

in the |α〉, |β〉 basis, we can distinguish between the two boxes - the box from
which there are qubits measured in state |β〉 is Box B.

However, since Box B also has a 1
2 chance of emitting a qubit measured in state

|α〉, we cannot always determine which box is which by examining only one
qubit. If the one qubit is measured in state |β〉, we know the box it originated
from is Box B, but if it is measured in state |α〉, we cannot tell which box it
came from.

3 (Extra Credit) Mach-Zehnder Interferometer

� Say the phase shifter is absent and a photon enters the interferometer

from below, described by a state vector |v〉 =

(
0
1

)
. The action of the

left beamsplitter can be represented by the matrix Bl = 1√
2

(
1 1
1 −1

)
and

the right by Bu = 1√
2

(
−1 1
1 1

)
. The final state will be represented by

Bu(Bl|v〉) - the action of Bl on |v〉, then Bu applied to that. Thanks
to matrix associativity, we can instead first evaluate BuBl and apply

that transformation to |v〉 - specifically, 1√
2

(
1 1
1 −1

)
· 1√

2

(
−1 1
1 1

)
=

3



1
2

(
0 2
−2 0

)
=

(
0 1
−1 0

)
. Applying this yields

(
0 1
−1 0

)
·
(

0
1

)
=

(
1
0

)
, so

the final state is |v′〉 =

(
1
0

)
. This corresponds to a |1|2 = 1 probability of

detection by D0 and |0|2 = 0 probability of detection by D1.

� Now consider the same problem but with a phase shifter present in the
lower beam, such that the phase of the lower beam component is shifted
by π. Its effect on the state of the photon is given by the matrix P =(

1 0
0 −1

)
. With our photon again starting in state |v〉 =

(
0
1

)
, the

final state is now given by Bu(P (Bl|v〉)) = (Bu(PBl))|v〉, again thanks
to matrix associativity. Note that we cannot move around the matrix
order, since matrix multiplication is not commutative! We calculate P ·Bl
as

(
1 0
0 −1

)
· 1√

2

(
1 1
1 −1

)
= 1√

2

(
1 0
0 −1

)
·
(

1 1
1 −1

)
= 1√

2

(
1 1
−1 1

)
.

Multiplying Bu by this gives 1√
2

(
−1 1
1 1

)
· 1√

2

(
1 1
−1 1

)
= 1

2

(
−1 1
1 1

)
·(

1 1
−1 1

)
= 1

2

(
−2 0
0 2

)
=

(
−1 0
0 1

)
. Applying this yields

(
−1 0
0 1

)
·(

0
1

)
=

(
0
1

)
, so the final state is |v′〉 =

(
0
1

)
. This corresponds to

a |0|2 = 0 probability of detection by D0 and |1|2 = 1 probability of
detection by D1.

� Now say we have a phase shift by an arbitrary phase φ, with its effect on

the state of the photon given by the matrix P =

(
1 0
0 eiφ

)
. Again, the

final state is Bu(P (Bl|v〉)) = (Bu(PBl))|v〉, and we first calculate P ·Bl =(
1 0
0 eiφ

)
· 1√

2

(
1 1
1 −1

)
= 1√

2

(
1 0
0 eiφ

)
·
(

1 1
1 −1

)
= 1√

2

(
1 1
eiφ −eiφ

)
.

Then, multiplying Bu by this yields 1√
2

(
−1 1
1 1

)
· 1√

2

(
1 1
eiφ −eiφ

)
=

1
2

(
−1 1
1 1

)
·
(

1 1
eiφ −eiφ

)
= 1

2

(
eiφ − 1 −eiφ − 1
eiφ + 1 −eiφ + 1

)
. Operating on |v〉

with this, we get: 1
2

(
eiφ − 1 −eiφ − 1
eiφ + 1 −eiφ + 1

)
·
(

0
1

)
= 1

2

(
−eiφ − 1
−eiφ + 1

)
. The

probability of D0 measuring the photon is
∣∣∣−eiφ−12

∣∣∣2, and expanding this

using Euler’s formula gives
∣∣∣− cosφ+1

2 − sinφ
2 i
∣∣∣2. Calculating the square of

the absolute value as a2 + b2, this comes out to
(

cosφ+1
2

)2
+
(

sinφ
2

)2
=

cos2φ+2cosφ+1+sin2φ
4 = 2cosφ+2

4 = cosφ+1
2 (minus signs removed for ease of

calculation throughout).

4



Doing similar calculations for D1 yields
∣∣∣−eiφ+1

2

∣∣∣2 =
∣∣∣− cosφ−1

2 − −sinφ2

∣∣∣2 =(
cosφ−1

2

)2
+
(

sinφ
2

)2
= cos2φ−2cosφ+1+sin2φ

4 = −2cosφ+2
4 = −cosφ+1

2 . To

reiterate, the chance of D0 measuring the photon is cosφ+1
2 , and the chance

of D1 measuring the photon is −cosφ+1
2 . These sum to 1, as expected:

cosφ+1
2 + −cosφ+1

2 = cosφ−cosφ+2
2 = 2

2 = 1.

� Now say the phase shifter is gone but the photon enters the interferometer

in a superposition |v〉 =

(
α
β

)
. Without the phase shifter, our final state

is given again by (BuBl)|v〉, as in the first question: we can reuse our

value for BuBl, that being

(
0 1
−1 0

)
. Applying this transformation to

|v〉 yields

(
0 1
−1 0

)
·
(
α
β

)
=

(
β
−α

)
. As such, the probability of D0

measuring the photon is |β|2, and the probability of D1 measuring the
photon is | − α|2 = |α|2.
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