Postulates of Quantum Mechanics Assignment: Homework

Christian Zhou-Zheng

1 Measurement Example

The "computational basis" of qubit states is given by $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\overline{0}$) and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1 . Another basis is given by $|\alpha\rangle = \frac{1}{\sqrt{2}}$ 2 $\sqrt{1}$ i) and $|\beta\rangle = \frac{1}{\sqrt{\beta}}$ 2 $\left(1\right)$ $-i$.

1.1 Part (a)

Check that both bases are orthonormal.

• $|0\rangle \cdot |1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 $\Big) \cdot \Big(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \Big)$ 1 $\Big) = 0$

•
$$
|\alpha\rangle \cdot |\beta\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ i \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -i \end{pmatrix} = \frac{1}{2}(1 - i^2) = 0
$$

•
$$
||\vec{0}|| = \sqrt{|0|^2 + |1|^2} = \sqrt{1} = 1
$$

•
$$
||\vec{1}|| = \sqrt{|1|^2 + |0|^2} = \sqrt{1} = 1
$$

•
$$
||\vec{\alpha}|| = \sqrt{\left|\frac{1}{\sqrt{2}}\right|^2 + \left|\frac{i}{\sqrt{2}}\right|^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{1} = 1
$$

• $||\vec{\beta}|| = \sqrt{\frac{1}{\sqrt{2}}}$ 2 $\binom{2}{\sqrt{}}$ + $\left|-\frac{i}{\sqrt{}}\right|$ 2 $\sqrt{\frac{1}{2} + \frac{1}{2}} =$ √ $1 = 1$

1.2 Part (b)

Say our qubit was initially in state $|0\rangle$ and was measured in the basis of $|\alpha\rangle$ and β). What will the state of the qubit be immediately following the measurement? What are the probabilities of the outcomes?

We apply Born's rule: the state can collapse to either $|\alpha\rangle$ with probability $|\langle \alpha | 0 \rangle|^2$, or $|\beta \rangle$ with probability $|\langle \beta | 0 \rangle|^2$. Calculating these two gives $|\langle \alpha | 0 \rangle|^2 =$ $\begin{array}{c} \hline \end{array}$ $\frac{1}{2}$ 2 $\frac{a}{\sqrt{a}}$ 2 \setminus $\cdot \int_{0}^{1}$ 0 $\left| \begin{matrix} 1 \\ 1 \end{matrix} \right|$ 2 $= \left| \frac{1}{\sqrt{2}} \right|$ 2 $2^2 = \frac{1}{2}$, and $|\langle \beta | 0 \rangle|^2 =$ $\left($ $\frac{1}{2}$ $\frac{\sqrt{2}}{-\frac{i}{\sqrt{2}}}$ 2 \setminus $\cdot \int_{0}^{1}$ 0 $\left| \begin{matrix} 1 \\ 1 \end{matrix} \right|$ 2 $= \left| \frac{1}{\sqrt{2}} \right|$ 2 $2^2 = \frac{1}{2}.$

Therefore, the state of the qubit will be $|\alpha\rangle$ with probability $\frac{1}{2}$ or $|\beta\rangle$ with probability $\frac{1}{2}$.

1.3 Part (c)

After the first measurement, the qubit is measured again in the basis $|0\rangle$, $|1\rangle$. What are the probabilities of the two outcomes now?

We consider all four possibilities: the qubit is measured in $|\alpha\rangle$ then $|0\rangle$, $|\alpha\rangle$ then $|1\rangle$, $|\beta\rangle$ then $|0\rangle$, and $|\beta\rangle$ then $|1\rangle$. We calculate the probability of each of these four possibilities, multiply each by the corresponding one of the first two, and sum them up.

• $|\langle 0|\alpha\rangle|^2 =$ $\begin{array}{c} \hline \end{array}$ (1) 0 $\big)$. $\sqrt{\frac{1}{2}}$ 2 $\frac{a}{\sqrt{a}}$ 2 $\Big) \Big|$ 2 $=\left\lfloor \frac{1}{\sqrt{2}}\right\rfloor$ 2 $\frac{2}{2} = \frac{1}{2}$

$$
\bullet \ |\langle 1|\alpha\rangle|^2 = \left| \begin{pmatrix} 0\\1 \end{pmatrix} \cdot \left(\frac{1}{\sqrt{2}} \right) \right|^2 = \left| \frac{i}{\sqrt{2}} \right|^2 = \frac{1}{2}
$$

$$
\bullet \ |\langle 0|\beta \rangle|^2 = \left| \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} \end{pmatrix} \right|^2 = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}
$$

$$
\bullet \ |\langle 1|\beta\rangle|^2 = \left| \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} \end{pmatrix} \right|^2 = \left| -\frac{i}{\sqrt{2}} \right|^2 = \frac{1}{2}
$$

We see that the probability of each outcome is equal; multiplying each by the $\frac{1}{2}$ original probability (of it collapsing into either $|\alpha\rangle$ or $|\beta\rangle$) and summing them up gives $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$ for total probability, as expected. The probability of it ending in state $|0\rangle$ is $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$, and state $|1\rangle$ also has probability $\frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

2 Distinguishing Between States

Two boxes each produce a stream of qubits. Box A produces qubits in the state $|\Psi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle + i|1\rangle)$. Box B randomly produces qubits in states $|0\rangle$ and $|1\rangle$, each with probability $\frac{1}{2}$. We have one of the boxes, but do not know which it is. Describe an experiment on the qubits that can tell the difference between box A and box B. Can you tell the difference between the boxes by examining only one of the qubits?

It's immediately obvious that measuring the qubits in the $|0\rangle$, $|1\rangle$ basis will not distinguish between the two boxes - Box B produces each with probability $\frac{1}{2}$, and some quick calculations show Box A produces each with probability $\frac{1}{2}$ as well. This is due to the inherent randomness in each; however, they are different types of random! Box A is quantum randomness, a superimposed state, whereas Box B is classical randomness, like a coin flip.

If we measure in a different basis system, perhaps we'll see something different. We notice that $|\Psi\rangle = |\alpha\rangle$, so what if we measure in the $|\alpha\rangle, |\beta\rangle$ basis? The qubits from Box A will always collapse to $|\alpha\rangle$, whereas the qubits from Box B will collapse to $|\alpha\rangle$ with probability $\frac{1}{2} (|\langle \alpha | 0 \rangle|^2 + |\langle \alpha | 1 \rangle|^2) = \frac{1}{2} (|\frac{1}{\sqrt{2}}|$ 2 $\left|-\frac{i}{\sqrt{2}}\right|$ 2 $\left(\begin{array}{c} 2 \\ 1 \end{array} \right) =$ $\frac{1}{2}(1) = \frac{1}{2}$ and $|\beta\rangle$ with (by similar math) probability $\frac{1}{2}$. Therefore, if we measure in the $|\alpha\rangle$, $|\beta\rangle$ basis, we can distinguish between the two boxes - the box from which there are qubits measured in state $|\beta\rangle$ is Box B.

However, since Box B also has a $\frac{1}{2}$ chance of emitting a qubit measured in state $|\alpha\rangle$, we cannot always determine which box is which by examining only one qubit. If the one qubit is measured in state $|\beta\rangle$, we know the box it originated from is Box B, but if it is measured in state $|\alpha\rangle$, we cannot tell which box it came from.

3 (Extra Credit) Mach-Zehnder Interferometer

• Say the phase shifter is absent and a photon enters the interferometer from below, described by a state vector $|v\rangle = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 1 . The action of the left beamsplitter can be represented by the matrix $B_l = \frac{1}{\sqrt{l}}$ 2 $(1 \ 1)$ 1 −1) and the right by $B_u = \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$. The final state will be represented by $B_u(B_l|v\rangle)$ - the action of B_l on $|v\rangle$, then B_u applied to that. Thanks to matrix associativity, we can instead first evaluate $B_u B_l$ and apply that transformation to $|v\rangle$ - specifically, $\frac{1}{\sqrt{2}}$ 2 $(1 \ 1)$ 1 −1 $\cdot \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ =

 $\frac{1}{2}$ $\begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Applying this yields $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1 $\Bigg) = \Bigg(\frac{1}{2} \Bigg)$ 0 $\Big)$, so the final state is $|v'\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0). This corresponds to a $|1|^2 = 1$ probability of detection by D_0 and $|0|^2 = 0$ probability of detection by D_1 .

- \bullet Now consider the same problem but with a phase shifter present in the lower beam, such that the phase of the lower beam component is shifted by π . Its effect on the state of the photon is given by the matrix $P = \begin{pmatrix} 1 & 0 \end{pmatrix}$ 1 0 $0 -1$ \setminus With our photon again starting in state $|v\rangle$ = $\sqrt{2}$ 0 1 \setminus , the final state is now given by $B_u(P(B_l|v)) = (B_u(PB_l))|v\rangle$, again thanks to matrix associativity. Note that we cannot move around the matrix order, since matrix multiplication is not commutative! We calculate $P \cdot B_l$ as $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $0 -1$ $\bigg\}$. $\frac{1}{4}$ 2 $(1 \ 1)$ 1 −1 $= \frac{1}{4}$ 2 $(1 \ 0)$ $0 -1$ $\Big\}$. $\Big(\begin{matrix} 1 & 1 \\ 1 & 1 \end{matrix}\Big)$ 1 −1 $= \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Multiplying B_u by this gives $\frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2}$ $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$ · $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2}$ $\begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. Applying this yields $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ · $\sqrt{0}$ 1 $\Big) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1), so the final state is $|v'\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1 . This corresponds to a $|0|^2 = 0$ probability of detection by D_0 and $|1|^2 = 1$ probability of detection by D_1 .
- Now say we have a phase shift by an arbitrary phase ϕ , with its effect on the state of the photon given by the matrix $P = \begin{pmatrix} 1 & 0 \\ 0 & i\end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$. Again, the final state is $B_u(P(B_l|v\rangle)) = (B_u(PB_l))|v\rangle$, and we first calculate $P \cdot B_l =$ $(1 \ 0)$ $\begin{pmatrix} 1 & 0 \ 0 & e^{i\phi} \end{pmatrix} \cdot \frac{1}{\sqrt{2}}$ 2 $(1 \ 1)$ 1 −1 $= \frac{1}{\sqrt{2}}$ 2 $(1 \ 0)$ $\begin{pmatrix} 1 & 0 \ 0 & e^{i\phi} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \ 1 & -1 \end{pmatrix}$ 1 −1 $= \frac{1}{4}$ 2 $\begin{pmatrix} 1 & 1 \end{pmatrix}$ $\frac{1}{e^{i\phi}} \quad \frac{1}{-e^{i\phi}}\bigg).$ Then, multiplying B_u by this yields $\frac{1}{\sqrt{2}}$ 2 $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}}$ 2 $(1 \ 1)$ $\left(\begin{matrix} 1 & 1 \ e^{i\phi} & -e^{i\phi} \end{matrix}\right) \;=\;$ $\frac{1}{2}$ $\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ e^{i\phi} & -e \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \ e^{i\phi} & -e^{i\phi} \end{pmatrix} = \frac{1}{2}$ $\int e^{i\phi} - 1 \quad -e^{i\phi} - 1$ $e^{i\phi} - 1 \quad -e^{i\phi} - 1$
 $e^{i\phi} + 1 \quad -e^{i\phi} + 1$ Operating on $|v\rangle$ with this, we get: $\frac{1}{2}$ $\int e^{i\phi} - 1 \quad -e^{i\phi} - 1$ $\left. \begin{array}{cc} e^{i\phi} - 1 & -e^{i\phi} - 1 \ e^{i\phi} + 1 & -e^{i\phi} + 1 \end{array} \right) \cdot \left(\begin{array}{cc} 0 \ 1 \end{array} \right)$ 1 $= \frac{1}{2}$ $\sqrt{-e^{i\phi}-1}$ $\begin{pmatrix} -e^{i\phi}-1\\ -e^{i\phi}+1 \end{pmatrix}$. The probability of D_0 measuring the photon is $\Big|$ $\left| \frac{-e^{i\phi}-1}{2} \right|$ 2 , and expanding this using Euler's formula gives $\left| -\frac{\cos \phi + 1}{2} - \frac{\sin \phi}{2}i \right|$ 2 . Calculating the square of the absolute value as $a^2 + b^2$, this comes out to $\left(\frac{\cos\phi+1}{2}\right)^2 + \left(\frac{\sin\phi}{2}\right)^2 =$ $\frac{\cos^2 \phi + 2\cos \phi + 1 + \sin^2 \phi}{4} = \frac{2\cos \phi + 2}{4} = \frac{\cos \phi + 1}{2}$ (minus signs removed for ease of calculation throughout).

Doing similar calculations for D_1 yields $\Big|$ $\frac{-e^{i\phi}+1}{2}$ $\mathbf{r}^2 = \left| -\frac{\cos\phi - 1}{2} - \frac{-\sin\phi}{2} \right|$ $2 =$ $\left(\frac{\cos\phi-1}{2}\right)^2 + \left(\frac{\sin\phi}{2}\right)^2 = \frac{\cos^2\phi - 2\cos\phi + 1 + \sin^2\phi}{4} = \frac{-2\cos\phi + 2}{4} = \frac{-\cos\phi + 1}{2}$. To reiterate, the chance of D_0 measuring the photon is $\frac{\cos \phi + 1}{2}$, and the chance of D_1 measuring the photon is $\frac{-\cos\phi+1}{2}$. These sum to 1, as expected: $\frac{\cos\phi+1}{2} + \frac{-\cos\phi+1}{2} = \frac{\cos\phi-\cos\phi+2}{2} = \frac{2}{2} = 1.$

 Now say the phase shifter is gone but the photon enters the interferometer in a superposition $|v\rangle = \begin{pmatrix} \alpha & \beta \\ \beta & \beta \end{pmatrix}$ β . Without the phase shifter, our final state is given again by $(B_u B_l)|v\rangle$, as in the first question: we can reuse our value for $B_u B_l$, that being $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Applying this transformation to $|v\rangle$ yields $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ β $\Big) = \Big(\begin{array}{c} \beta \end{array} \Big)$ $-\alpha$). As such, the probability of D_0 measuring the photon is $|\beta|^2$, and the probability of D_1 measuring the photon is $|-\alpha|^2 = |\alpha|^2$.