Copyright © 2010. Cambridge University Press. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted

under U.S. or applicable copyright law.

Wave-particle duality

entropy nH. Let N be the minimum number of bits needed to represent a message block.
This will be the smallest integer that is at least as big as nH, and so

nH <N <nH+1. (1.5)

Calculating the number of bits required on a “per message” basis, we are using K = N/n

bits per message, and |

H<K<H+-. (1.6)
n

If we consider very large message blocks, n >> 1 and so 1/n is very small. The two ends
of the inequality chain squeeze together, and for large blocks we will use almost exactly
H bits per message to represent the information. Therefore, if we encode our messages
“wholesale,” the entropy H precisely measures the number of bits per message that we need.

Exercise 1.6 Consider a type of message that has three possible values (like the message
of the colonial spies in Boston). Calculate the minimum number of bits required to encode
blocks of 2, 3, 5, 10, or 100 such messages. In each case, also calculate the number of bits
used per message.

Things become more complicated in the presence of noise. Noise is a general term for
any process that prevents a signal from being transferred and read unambiguously. For
example, imagine that there had been fog on Boston Harbor on that April night in 1775.
In a heavy fog, the church steeple might not have been visible at all from Charlestown,
and no information would have been conveyed. In a lighter mist, the observers might have
been able to see that there were lamps in the steeple, but not been able to count them. They
would then have known that the British troops were on the move, but not which way they
were going. A part of the information would have been transmitted successfully, but not all.

It is possible to formalize this notion of partial information. Before any communication
takes place, there are M possible messages and the entropy is H = log M. Afterward, we
have reduced the number of possible messages from M to M, but because of noise M" > 1.
The amount of information conveyed in this process is defined to be

H—H =log L (1.7)
=log 7. :

Exercise 1.7 A friend is thinking of a number between 1 and 20 (inclusive). She tells you
that the number is prime. How much information has she given you?

The concept of information is fundamental in scientific fields ranging from molecular
biology to economics, not to mention computer science, statistics, and various branches of
engineering. It is also, as we will see, an important unifying idea in physics.

1.2 Wave-particle duality
|

Since the 17th Century, there have been two basic theories about the physical nature of light.
Isaac Newton believed that light is composed of huge numbers of particle-like “corpuscles.”
Christiaan Huygens favored the idea that light is a wave phenomenon, a moving periodic
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disturbance analogous to sound. Both theories explain the obvious facts about light, though
in different ways. For example, we observe that two beams of light can pass through one
another without affecting cach other. In the Newtonian corpuscle theory, this simply means
that the light particles do not interact with each other. In the Huygensian wave theory, it
implies that light waves obey the principle of superposition: the total light wave is simply
the sum of the waves of the two individual beams.

To take another example, we observe that the shadows of solid objects have sharp edges.
This is easily explained by the Newtonian theory, since the light particles move in straight
lines through empty space. On the other hand, this observation seems at first to be a fatal
blow to the wave theory, because waves moving past an obstacle should spread out in the
space beyond. However, if the wavelength of light were very short, then this spreading
might be too small to notice. For over a hundred years, the known experimental facts
about light were not sufficient to settle whether light was a particle phenomenon or a wave
phenomenon, and both theories had many adherents.

Then, in 1801, Thomas Young performed a crucial experiment in which Huygens’s wave
theory was decisively vindicated. This was the famous two-slit experiment.

Suppose that a beam of monochromatic light shines on a barrier with a single narrow
opening, or “slit.” The light that passes through the slit falls on a screen some distance
away. We observe that the light makes a small smudge on the screen. (For thin slits, this
smudge of light actually gets wider when the slit is made narrower, and on either side of
the main smudge there are several much dimmer smudges. These facts are already difficult
to explain without the wave theory, but we will skip this point for now.)

Light passing through another slit elsewhere in the barrier will make a similar smudge
centered on a different point. But suppose two nearby slits are both open at once. If we
imagine that light is simply a stream of non-interacting Newtonian corpuscles, we would
expect to see a somewhat broader and brighter smudge of light, the result of the two
corpuscle-showers from the individual slits.

But what happens in fact (as Young observed) is that the region of overlap of the two
smudges shows a pattern of light and dark bands called interference fringes, see Fig. 1.1.

This is really strange. Consider a point on the screen in the middle of one of the dark
fringes. When either one of the slits is open, some light does fall on this point. But when
both slits are open, the spot is dark. In other words, we can decrease the intensity of light
at some points by increasing the amount of light that passes through the barrier.

-
+ = i

The light patterns from two single slits combine to form a pattern of interference fringes.
(For clarity on the printed page, the negative of the pattern is shown; more ink means higher
intensity.)
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The situation is no less peculiar for the bright fringes. Take a point in the middle of one
of these. When either slit is opened, the intensity of light at the point has some value /.
But with both slits open, instead of an intensity 2/ (as we might have expected), we sce an
intensity of 41! The average of the intensity over the light and dark fringes is indeed 21,
but the pattern of light on the screen is less uniform than a particle theory of light would
suggest.

Young realized that this curious behavior could easily be explained by the wave theory
of light. Waves emerge from each of the two slits, and the combined wave at the screen is
just the sum of the two disturbances. Denote by ¢ (7, ¢) the quantity that describes the wave
in space and time. In sound waves, for example, the “wave function” ¢ describes variations
in air pressure. The two slits individually produce waves ¢ and ¢,, and by the principle of
superposition the two slits together produce a combined wave ¢ = ¢ + ¢;.

Two further points complete the picture. First we note that ¢» can take on either positive
or negative values. By analogy to surface waves on water, the places where ¢ is greatest
are called the wave “crests,” while the places where ¢ is least (most negative) are called
the wave “troughs.” Second, the observed intensity of the wave at any place is related to
the square of the magnitude of the wave function there: 7 o< |2

At some points on the screen, the two partial waves ¢ and ¢, are “out of phase,” so that
a crest of ¢ is coincident with a trough of ¢, and vice versa. At these points, the waves
cancel each other out, and |¢|? is small. This phenomenon is called destructive interference
and is responsible for the dark fringes.

At certain other points on the screen, the two partial waves ¢ and ¢; are “in phase,” by
which we mean that their crests and troughs arrive synchronously. When ¢ is positive, so
is ¢, and so on. The partial waves reinforce each other, and |¢|? is large. This phenomenon,
constructive interference, is responsible for the bright fringes.

At intermediate points, ¢; and ¢, neither exactly reinforce one another nor exactly
cancel, so the resulting intensity has an intermediate value.

Exercise 1.8 In the two slit experiment, in a particular region of the screen the light from
a single slit has an intensity /, but when two slits are open, the intensity ranges over the
interference fringes from 0 to 4/. Explain this in terms of ¢ and ¢;.

Young was able to use two-slit interference to determine the wavelength A of light, which
does turn out to be quite small. (For green light, X is only 500 nm.) Later in the 19th Century,
James Clerk Maxwell put the wave theory of light on a firm foundation by showing that
light is a travelling disturbance of electric and magnetic fields — an electromagnetic wave.

But the wave theory of light was not the last word. In the first years of the 20th Century,
Max Planck and Albert Einstein realized that the interactions of light with matter can only
be explained by assuming that the energy of light is carried by vast numbers of discrete
light quanta later called photons. These photons are like particles in that each has a specific
discrete energy £ and momentum p, related to the wave properties of frequency f and
wavelength A:

E=hf,
ok (1.8)
P=2
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where h = 6.626 x 10734 J s, called Planck’s constant. When matter absorbs or emits light,
it does so by absorbing or creating a whole number of photons.

Einstein used this idea to explain the photoclectric effect. In this phenomenon, light
falling on a metal in a vacuum can cause clectrons to be ¢jected from the surface. If the
light intensity is increased, the number of ejected electrons increases, but the kinetic energy
of each photoelectron remains the same. In a simple wave theory, this is hard to understand.
Why should a more intense light, with stronger electric and magnetic fields, not produce
more energetic photoelectrons? Einstein reasoned that each ejected electron gets its energy
from the absorption of one photon. A brighter light has more photons, but each photon still
has the same energy as before.

Exercise 1.9 The “work function” /¥ of a metal is the amount of energy that must be added
to an electron to free it from the surface. Write down an expression for the kinetic energy K
of a photoelectron in terms of 7 and the incident light frequency /. Also find an expression
for the minimum frequency fp required for the photoelectric effect to take place. (This will
depend on W, and so may be different for different metals.)

This “quantum theory” of light poses some perplexities. In view of Young’s two-slit
interference experiment, there can be no question of abandoning the wave theory entirely.
Photons cannot be Newtonian corpuscles. Nevertheless, the fact that light propagates
through space as a continuous wave (as seen in the two-slit experiment) does not prevent
light from interacting with matter as a collection of discrete particles (as in the photo-
electric effect). Furthermore, this bizarre situation is not limited to light. In 1924 Louis
De Broglie discovered that the particles of matter — electrons and so forth — also have
wave properties, with particle and wave quantities related by Eq. 1.8. It is possible to do a
two-slit experiment with electrons and observe interference effects. The general principle
that everything in nature has both wave and particle properties is sometimes called wave —
particle duality.

The effort to put quantum ideas into a solid, consistent mathematical theory led to the
development of quantum mechanics by Werner Heisenberg, Erwin Schrodinger, and Paul
Dirac. Quantum mechanics has proved to be a superbly successful theory of phenomena
ranging from elementary particles to solid state physics. It is also a very peculiar theory
that challenges our intuitions on many levels. Quantum mechanics involves far-reaching
alterations in our ideas about mechanics, probability theory, and even (as we shall see) the
concept of information.

To illustrate this in a small way, let us re-examine Young’s two-slit experiment with quan-
tum eyes. First, we must understand that the intensity of light is a statistical phenomenon.
When we say that light is more intense at one point than it is at another, we simply mean
that more photons can be found there. But what can this mean when the number is very
small? What can it mean if there is only one photon present?

In the single-photon case, the intensity of the wave at any point is proportional to the
probability of finding the photon at that point. In general, quantum mechanics predicts
only the probability of an event, not whether or not that event will definitely occur. So it
is with photons. The behavior of any particular photon cannot be predicted exactly, but the
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16 photons
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256 photons

1024 photons

Photons fall randomly on a screen according to a probability distribution given by two-slit
interference. Each image shows four times as many photons as the one before. After many
photons, a smooth intensity pattern emerges statistically.

statistical behavior of a great many photons gives rise to a smooth intensity pattern. See
Fig. 1.2 for an illustration of this.

In the single-photon case, therefore, the wave ¢ is actually a probability amplitude, a
curious mathematical creature that is not itself a probability, but from which a probability
may be calculated. Roughly speaking, the probability” P of finding a photon at a given point
is just P = |¢|*. Probability is the square of the magnitude of a probability amplitude.

The probability amplitude wave ¢ obeys the principle of superposition. In the two-
slit experiment, consider a particular point X on the screen. With only slit #1 open, the
probability amplitude that the photon lands at X is ¢, so that the probability of finding the
photon there is P; = |¢1|*. Opening only slit #2 yields an amplitude ¢,, which gives rise to
a probability P, of finding the photon at X. But with both slits open, we have a combined
probability amplitude ¢ = ¢ + ¢7, yielding a probability

P=¢g|* =1¢1 +dl, (1.9)

for the photon to wind up at X. The two probability amplitudes may reinforce one
another or cancel each other out, enhancing or suppressing the probability that the photon
lands at X.

If the photon can pass through only one slit, the probability of reaching X is P;. If it
can pass only through the other, it is P,. In ordinary probability theory, if there are two
possible mutually exclusive ways that an event can happen, then the combined probability
is P = P| + P;. For example, if we flip two coins, the probability that they land with the
same face upward is

P(same face) = P(both heads) + P(both tails). (1.10)
3 In the two-slit experiment, where the photon can be found in a continuous range of positions, P is actually a

probability density rather than a probability. This technical detail, and a great many others, will be worked out
carefully in later chapters!
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But quantum probabilities are not ordinary probabilities! In the two slit experiment, the
combined likelihood may be either less than or greater than the sum Py + P;, depending on
the relative phase of the two amplitudes ¢; and ¢;. In other words, quantum probabilitics
can exhibit destructive and constructive interference effects.

Suppose at a point X on the screen the probabilities P; and P, both equal p. This means
that the probability amplitudes at this point satisfy

1] = |2l = /p. (1.11)

If the two amplitudes constructively interfere at X, then the two amplitudes are “in phase”
there: ¢; = ¢, and so

P=l¢g|* = 2¢11> = 4p. (1.12)

If the two amplitudes destructively interfere at X, then ¢; = —¢ (the amplitudes arc “out
of phase”). Then ¢ = 0 and so P = 0. We can sce that the probability P for finding a
photon in this region of the screen will vary over the interference fringes between 0 and 4p.

Exercise 1.10 Consider a point X on the screen at which P; = p and P, = 2p. That s, with
only slit #1 open, the photon has a probability p of reaching X, but with only slit #2 open
this probability is twice as great. Now open both slits. What are the largest and smallest
possible values for P at X due to interference effects?

When analyzing the behavior of a photon in the two-slit experiment, we find that
P = |¢1 + ¢|>. Yet the conventional probability law P = P; + P, does apply to the
two-coin example. So we are faced with an apparent inconsistency. Sometimes we must
add probabilities, and sometimes we must add probability amplitudes. How do we know
which of these rules will apply in a given situation?

The difference cannot be mere size. Quantum interference effects have been observed in
surprisingly large systems, including molecules more than a million times more massive
than electrons (see Problem 1.4). Conversely, we can often apply ordinary probability
rules to microscopic systems. The essential difference between the two situations must lie
elsewhere.

Notice that, in the two-coin example, we can check to see which of the two contributing
alternatives actually occurred. That is, we can examine the coins and tell whether they are
both heads or both tails. But in the two-slit experiment, this is not possible. If the single
photon arrives in one of the bright interference fringes, it could have passed through either
of the slits. Even a very close examination of the apparatus afterward would not tell us
which possible alternative occurred.

Suppose we were to modify the two-slit experiment so that we could tell which slit
the photon passed through. We can for instance imagine a very sensitive photon detector
placed beside one of the slits, which is able to register the passage of a photon without
destroying it. This detector need not be a large device: a single atom would be enough in
principle, if the state of that atom were sufficiently affected by the passing light quantum.
With such a detector in place, we could perform the two-slit interference experiment and
then afterwards determine which path the photon took, simply by checking whether or not
a photon had been detected.
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But, as Niels Bohr pointed out, this new experiment is not the same as the original two-slit
experiment. If we analyze the proposed modification carefully, we will find that the presence
of the detector modifics the behavior of the light. The consistent phase relationship between
the partial waves from the two slits will be destroyed, and so no consistent interference
effects will be observable. The pattern of light intensity (photon probability) on the screen
will show no bright and dark interference fringes. In fact, the probability P of a photon
arriving at a point X will be exactly the sum P 4 P, for this experiment.

Exercise 1.11 Suppose that a particle detector is placed beside slit #2 in the two-slit
experiment. As a simplified model, imagine that the effect of the detector on the quantum
amplitude is to randomly multiply the partial wave ¢, by +1 or —1. Show that, on average,
the ordinary probability law holds — that is, that the average of |¢; + 1% and |¢p1 — ¢
is exactly P1 + P». (This is true whether the amplitudes are real or complex quantities.)

Bohr said that the interference experiment and the “which slit” experiment are comple-
mentary measurement procedures. We can do either of them, but choosing to perform one
logically excludes performing the other on the same photon. We can either arrange the
apparatus so that interference effects are present, or we can arrange it so that we find out
which slit the photon passed, but not both.

The essential difference between the two-coin experiment (sum the probabilities) and the
two-slit experiment (sum the amplitudes) is information. In each situation, two alternatives
contribute to a final result. For the coins, there is no obstacle to obtaining information
about which of the two possible alternatives (heads or tails) is realized. In that case, the
total probability is given by P = P; + P;. But for a photon in a two-slit interference
experiment, such information is not available. Indeed, it does not exist, because any actual
arrangement in which the photon’s path is registered will show no interference effects at all,
even if the information is never read by a human experimenter. The quantum rule for adding
probability amplitudes applies when the system is informationally isolated and produces
no physical record of any sort anywhere in the Universe about which possible intermediate
alternative is realized.

Exercise 1.12 Explain the following slogan, which might be suitable for printing on a
T-shirt: Quantum mechanics is what happens when nobody is looking.

The idea that a photon might pass through the slits and leave no trace at all of its
precise route is slightly disturbing and does not accord with “classical” intuitions based on
Newtonian mechanics. Imagine that a Newtonian particle can travel by one of two possible
paths. This particle is continually interacting with all of the other particles in the Universe.
The position of the planet Saturn, say, will be minutely affected by the gravitation of the
particle, which will in turn depend upon the particle’s position. Therefore, by an immensely
precise determination of Saturn’s motion, we should (in principle) be able to tell which
path the particle followed. In classical mechanics, no system can really be informationally
isolated.

In a slightly more realistic example, the path of the photon through the slits should
produce a slight lateral recoil in the barrier, and a careful determination of this recoil
should in principle allow us to figure out which slit was passed. Einstein proposed just
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such a thought-experiment to Bohr in the course of a years-long debate about the internal
consistency of quantum theory. Bohr responded that quantum mechanics must apply to
the barrier as well. The two possible final states of the barrier, which we wish to use
to distinguish which slit the photon went through, do have slightly different quantum
descriptions. Nevertheless, the two states are not reliably distinguishable by any possible
measurement, and so cannot be counted as distinct physical situations.* So it remains true
that no physical record exists of the photon’s choice of slit, and the quantum probability
law applies.

The concepts of information and distinguishability are at the heart of the theory of quan-
tum mechanics. In the chapters that follow, we will develop that theory into a sophisticated
mathematical structure and then apply it to many physical situations. Ideas about probabil-
ity, measurement, and information will be our constant guides. Such guides will not make
quantum mechanics seem less strange to our naive intuition, but they will help us begin to
build a new quantum intuition, one that more nearly conforms to the strange and marvelous
ways of nature.

Problems

Problem 1.1 We said that our definition of H applies when the possible messages are
equally likely. Now consider a binary message in which 0 has probability 1/3 and 1 has
probability 2/3. What value of H should we assign when the probabilities are not equal?

We determine this by “dividing” the message 1 into two messages, 1a and 1b, which
are equally likely. Then the overall message has three equally likely possibilities (0,1a,1b).
This message is composed of the original (0,1) message, followed (if the first message is 1)
by the (1a,1b) message.

Next we postulate that

entropy entropy
of (0,1a,1b) | = | of(0,1)
message message

( probability )X entropy

f(1a,1
of message 1 of (1a,1b)
message

(Think about why this postulate might make sense.) This becomes
2 2
log3:H+§10g2 and thus H:10g3—§10g280.918.

(a) Explain intuitively why H should be less than 1.0 in this situation.

4 Bohr also considered the case where a barrier of very low mass is given a sufficient “kick™ that the photon’s
slit can be determined. But in this case, the quantum indeterminacy in the barrier’s own position is enough to
“wipe out” any interference effects! (We analyze a related example in Section 10.4.) The Bohr—Einstein debate,
with Einstein challenging and Bohr defending the principles of quantum theory and complementarity, played a
vital role in clarifying the conceptual content of the quantum theory.
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(b) Calculate H if message 0 has probability 1/6 and message 1 has probability 5/6.

(c) Generalize this idea to the following situation. Message 0O has a probability p = k/n
and message 1 has probability ¢ = k' /n, where k, k', and n are positive integers with
k + k' = n. Find an expression for H in this case that only involves p and g.

Problem 1.2 Five cards are dealt face-down from a 52-card deck.

(a) How many possible sets of five cards are there? How much information do we lack
about the cards?

(b) The first three are turned over and revealed. Knowing these, how many possibilities
remain?

(¢) How much information was conveyed when the three cards were revealed? Is this 3/5
of the total? Why or why not?

(d) Repeat parts (a)—(c) if the five cards are dealt from five independent decks.

Problem 1.3 In his short story “The Library of Babel,” Jorge Luis Borges imagines a
seemingly infinite library containing books of random text. The language of the library has
twenty-five characters, and

... each book is of four hundred and ten pages; each page, of forty lines, each line, of
some eighty letters which are black in color.

Calculate the entropy of one of the books in Borges’ library.

Problem 1.4 In 1999, a research group at the University of Vienna was able to observe
quantum interference in a beam of Cgp molecules. Cgg is called buckminsterfullerene,
and the soccerball-shaped Cgp molecules are sometimes called buckyballs. A buckyball
molecule has a mass of about 1.2 x 10~%* kg.

(a) The buckyball wavelength in the experiment was about 3 pm. How fast were the
molecules moving?
(b) What would be the wavelength of an electron moving at the same speed?

Problem 1.5 The kinetic energy K of a particle is related to its momentum p by K =
p? /21, where p is the particle’s mass. In a gas at absolute temperature 7', the molecules
have a typical kinetic energy of 3k,7 /2. Derive an expression for the thermal de Broglie
wavelength, a typical value for the de Broglie wavelength A of a molecule in a gas. For
helium atoms (1 = 6.7 x 10727 kg), calculate the thermal de Broglie wavelength at room
temperature (7 = 300 K) and at the boiling point of helium (7' = 4 K).

Quantum effects become most significant in matter when the thermal de Broglie wave-
length of the particles is greater than their separation. At atmospheric pressure, gas
molecules are about 1-2nm apart; in a condensed phase (liquid, solid) they are about
ten times closer. How do these compare with the thermal de Broglie wavelengths you
calculated for helium?

Problem 1.6 A single photon passes through a barrier with four slits and strikes a screen
some distance away. Consider a point X on the screen. The probability amplitudes for
reaching X via the four slits are ¢1, ¢», ¢3, and ¢a.

EBSCO Publishing : eBook Academic Collection (EBSCOhost) - printed on 6/22/2020 11:19 PM via BROWN UNIVERSITY

AN 212279

* Crhimarhar Raniamin  Wactmaraland Mirchanl N * Nuantim Draracenc Cuetame  and Thfarmatinn



A1l rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted

Copyright © 2010. Cambridge University Press.
under U.S. or applicable copyright law.

14 Bits and quanta

(a) What is the net probability P that the photon is found at X if no measurement is made
of which slit the photon passed through?

(b) A detector is placed by slit #4, which can register whether or not the photon passes that
slit (but does not absorb the photon or deflect it). What is P in this case?

(c) The detector is now moved to a point between slits #3 and #4 and registers whether or
not the photon passes through one of these slits. However, the detector does not record
which of these two slits the photon passes. What is P in this case?
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2.1 The photon in the interferometer
e —

This chapter introduces many of the ideas of quantum theory by exploring three specific
“case studies” of quantum systems. Each is an example of a qubit, a generic name for the
simplest type of quantum system. The concepts we develop will be incorporated into a
rigorous mathematical framework in the next chapter. Our business here is to provide some
intuition about why that mathematical framework is reasonable and appropriate for dealing
with the quantum facts of life.

Interferometers

In Section 1.2 we discussed the two-slit interference experiment with a single photon. In
that experiment, the partial waves of probability amplitude were spread throughout the
entire region of space beyond the two slits. It is much easier to analyze the situation in
an interferometer, an optical apparatus in which the light is restricted to a finite number
of discrete beams. The beams may be guided from one point to another, split apart or
recombined as needed, and when two beams are recombined into one, the result may show
interference effects. At the end of the interferometer, one or more sensors can measure the
intensity of various beams. (A beam is just a possible path for the light, so there is nothing
paradoxical in talking about a beam of zero intensity.) Figure 2.1 shows the layout of a
Mach—Zehnder interferometer, which is an example of this kind of apparatus.

What happens when we do an interferometer experiment with a single photon? We will
consider this question for interferometers that contain only /inear optical devices, which do
not themselves create or absorb photons.' At the end of our interferometer, our light sensors
are photon detectors, which can register the presence or absence of a single photon. Thus,
in our calculations we will be interested in the probabilities that the various detectors will
“click,” recording the presence of the photon in the corresponding beam.

We learned in our discussion of the two-slit experiment in Section 1.2 that the probability
of finding the photon at a particular location is the square of the magnitude of a probability

! These devices are also unchanged by the passage of a photon. For instance, we assume it is impossible to
determine whether or not a photon has reflected from a given mirror, simply by examining the mirror afterward.
The photon therefore remains informationally isolated during its passage through the interferometer. As we will
see in Section 10.4, this is an entirely reasonable assumption for actual interferometer experiments.
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Layout of a Mach-Zehnder interferometer. Light in the input beam is divided into two beams,
which are later recombined. Light sensors measure the intensities of the two output beams.

amplitude. Each beam in our single-photon interferometer experiment will have an ampli-
tude «, and the probability P that a detector would find the photon there (if we were to
introduce such a detector) is just

P=lal*. (2.1)

Suppose at some stage of our interferometer we know for sure that the photon must be
in one of two beams, which have amplitudes o and 8 respectively. Then it follows that
o> + 1817 = 1.

Complex amplitudes

One important kind of device that we can introduce into a beam is called a phase shifter.
This could simply be a glass plate through which the beam travels. A phase shifter does
not alter the probability that the photon is found in the beam, so the magnitude |«| is not
changed. However, the phase of « can be altered. By introducing a particular thickness &
of glass, we can change the amplitude from « to —«. (The exact value of § depends on the
index of refraction of the glass and the wavelength of the light.) This change in phase is
highly significant, for it can turn constructive interference into destructive interference at a
later stage of the interferometer.

If we have two such plates, or a single plate with thickness 28, the amplitude will
become —(—«a) = «, and the original amplitude is restored. But suppose we have a plate
of thickness §/2? This plate would produce a change the amplitude « such that (1) the
magnitude |« is still the same, and (2) if the change were performed twice, the phase
would be multiplied by —1.

Glass plates can be made in a continuous range of thicknesses, producing a continuous
range of phase shifts. For this to be possible, the beam phases o« must be complex quantities,
with both real and imaginary parts. A plate with thickness §/2 may multiply the amplitude
by a factor of i = /—1. This does not change the magnitude of the complex phase «, since
la| = li|. Two such plates (or a single plate of thickness §) multiply the phase by i? = —1,
as required.
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The photon in the interferometer

P=lal’

D

a o

Two important interferometer components. The photon detector D will register the presence of a
photon in the beam with probability P = |ee]?, where « is the probability amplitude. A phase shift
of ¢ changes the amplitude from « to e%a.

In general, a glass plate of some thickness will multiply the amplitude of the beam by
¢'®, where ¢ (the phase shiff) is proportional to the thickness of the glass. Changing « to
—a could be accomplished by phase shifters with ¢ = 7, 37, S, and so on. A phase shift
of ¢ does not change the probability that the photon is found in the beam, since for any «,
see Fig. 2.2,

|| = ol (2.2)

The fact that quantum probability amplitudes are complex quantities is one of the oddest
facts about quantum mechanics. Mathematicians introduced complex numbers in the 16th
Century to help solve certain algebraic problems. Such numbers are often viewed as highly
abstract entities, little connected to the physical world. The number i is, after all, said to be
“imaginary.” Complex numbers are sometimes used as an algebraic shortcut in Newtonian
mechanics or electromagnetism. But in quantum mechanics, complex numbers are not just
a convenient trick; they are inescapable and full of significance.

Exercise 2.1 Remind yourself of the rules of complex arithmetic. If o* denotes the complex
conjugate of o, show

(@) |of* = a*a.
b) a+a* =2N(a).
(c) Forreal ¢, (¢%)" = ™.

Exercise 2.2

(a) Suppose § is the smallest thickness of glass that produces a phase shift of w — in other
words, that multiplies the phase by —1. What is the phase shift if the glass plate has a
thickness of §/5?

(b) Suppose 8 is the next-to-smallest thickness of glass that produces the same change in
phase (i.e. multiplying the phase by —1). What is the smallest thickness that would do
s0? What phase shift would be produced by a plate of thickness §/5?

The beam amplitudes in an interferometer obey the principle of superposition. We will
illustrate this with a simple example. Suppose at some stage of the interferometer, there

2 Anything that changes the optical path length of the beam, including a distance of empty space, will act as
a phase shifter. In our simplified treatment here, we will ignore the effect of distance and think of all phase
shifters as discrete objects that can be either put into or left out of the interferometer beam.
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0} + =
situation A situation B

A graphical representation of Eq. 2.4, showing a superposition of situation A and situation B.

are just two beams available for the photon, which we will call the “upper” beam and the
“lower” beam. Consider two possible physical situations, denoted 4 and B. In situation 4,
the photon is certainly in the upper beam. The probability amplitude for this beam is 1 and
the amplitude for the lower beam is 0. (The upper beam amplitude could be anything of the
form €, but we will consider the simplest case.) In situation B, the roles are reversed: the
upper amplitude is 0 and the lower is 1, and so the photon is certainly in the lower beam.

The principle of superposition means that the existence of these two situations implies the
existence of many other situations in which the beam amplitudes are linear combinations of
the assignments for 4 and B. Given complex coefficients & and f, then there is a possible
physical situation which we can formally write as

o (situation 4) + B (situation B) . (2.3)

In this combined situation, the amplitude for the upper beam is justo - 1 + 8- 0 = o, while
the lower beam amplitude is @ - 0+ 8 - 1 = B. Of course, to maintain a proper assignment
of probabilities, we will have to require that |o|*> + |8]* = 1.

This is much easier to express if we describe each situation by a column vector whose
entries are the beam amplitudes. Then the first situation could be written ((1)) and the second

one (). The principle of superposition tells us that

(5)==(s)=2(7): 24

is also a possible physical situation, provided |a|>+|8|*> = 1, see Fig. 2.3 for an illustration.
From this we note, first, that a physical situation for the photon in the interferometer can
be summarized by a vector whose components are probability amplitudes. Second, the
principle of superposition means that a complex linear combination of two such vectors
also represents a possible physical situation, provided the amplitudes satisfy a normalization
condition (meaning that all probabilitics must add up to one).

Beamsplitters

Now we turn our attention to a key element of an interferometer, the beamsplitter. This is
a device that takes an input beam and splits it into two beams of lower intensity. A typical
beamsplitter is a half-silvered mirror. A beam incident on such a mirror will produce both
a reflected beam and a transmitted beam, each having half the intensity of the original.
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X 1 z

At beamsplitter BS, input beams of unit amplitude produce output beams with amplitudes w, x, y,
and z.

o a'=wa+yp

B P =xa+:zf

The general situation for the beamsplitter BS. Input amplitudes « and 8 are transformed into
output amplitudes «’ and g’, each of which is a linear combination of the input amplitudes.

What is the effect of a beamsplitter on the probability amplitudes when the incident
beam has only a single photon? Figure 2.4 summarizes. There are two possible input beams
for the beamsplitter. For an upper input beam with amplitude 1, we denote the resulting
reflected and transmitted beam amplitudes by w and x respectively. A lower input beam
with amplitude 1 yields output beam amplitudes y and z, as shown. If the beamsplitter is
a half-silvered mirror, then the probability that the photon is reflected or transmitted at the
mirror is one-half. That is,

1
wi? = |l = PP = |2 = 5. 25)
Now we can apply the principle of superposition to find how the beamsplitter works
for situations in which the photon could be in either input beam. Suppose « and 8 are
the amplitudes for the upper and lower input beam. The beamsplitter transforms these into
amplitudes o’ and B’ for the corresponding output beams. By superposition, these are

a' =wa + yB,

5 x4 o, (2.6)

as shown in Fig. 2.5, The relation between input and output amplitudes is casy to express
in the amplitude-vector notation introduced above. It is

()= ()= (G) e

This is pretty neat. We represent the photon amplitudes by column vectors (%) and (z, )
The beamsplitter is described by the 2 x 2 matrix (}‘: Y ) The action of the beamsplitter on

z
the input amplitudes then corresponds to simple matrix multiplication.
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Exercise 2.3 Verify that Eq. 2.7 is correct.

So far, so good. But what are the elements of the beamsplitter matrix for a particular
device? For a half-silvered mirror, we know from Eq. 2.5 that the matrix elements are
complex quantities with magnitude \L@ The simplest possible choice would therefore be

1
W:x:y:Z:—.

V2

What would be the properties of such a beamsplitter? Photons incident along one or the
other of the two input beams yield

(s)= 50 )(6)-
(1)=50)(0)-

These are perfectly reasonable amplitudes for the output beams. In either case, the photon

Sl =5l- Sl=61-

2
has a probability ’\%| = % of being found in each of the output beams. But suppose we
consider an input that is a superposition of the two beams:

b
~at o))
/2

Now the photon has probability |1|> = 1 of being found in each output beam. This is
certainly wrong! The “simplest possible” matrix elements for a beam splitter thus cannot
correspond to any actual beamsplitter, because that matrix can lead to illegal probability
assignments. It does not “conserve probability.”

The output probabilities are too large because constructive interference of the amplitudes
takes place in both output beams. This is not possible. If constructive interference happens
in some places, destructive interference must happen elsewhere.

In other words, our “simplest possible” beamsplitter matrix fails because the phases of
the matrix elements cannot be as proposed. On the other hand, this matrix works fine:

()50

Exercise 2.4 Show that, for any allowable input amplitudes (%), a beamsplitter described

Sl=Sl-

by Eq. 2.8 yields output amplitudes such that |oz’|2 + |,3/|2 =1.

Equation 2.8 describes a device called a balanced beamsplitter. The negative sign in
the lower-right (z) matrix element means that when the lower input beam is reflected,
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M

DO

A Mach-Zehnder interferometer. Compare Fig. 2.1.

it undergoes a phase shift of 7, but other reflected and transmitted beams have zero net
phase shift.

This accords with classical wave optics. A real half-silvered mirror is a slab of glass with
a very thin metallic coating on one side. When light is reflected at an interface, the wave
picks up a m phase shift whenever the incident beam is coming from a medium of lower
refractive index to one of higher index — for instance, from air to glass. Thus, the beam that
is reflected on the metal coating from outside the glass gets a negative sign, but not the one
that reflects from the inside.”

When we include a balanced beamsplitter in our calculations, we will have to be careful
to indicate on which side the reflected beam acquires the negative sign. In diagrams, we will
do this by placing a dot (e) on one side of the beamsplitter. The reflected beam amplitude
on the dotted side is multiplied by —1.

Consider Fig. 2.6, a diagram of the Mach—Zehnder interferometer sketched in Fig. 2.1
above. Two balanced beamsplitters BS1 and BS2 are present, as are a pair of mirrors
(both labelled M) and a pair of photon detectors designated DO and D1. A phase shifter is
present on one of the beams, which introduces a phase shift of ¢. We send photons into the
interferometer along just one of the input beams, so that the amplitude of that beam can be
taken to be 1.

Exercise 2.5 Consider the Mach—Zehnder interferometer set-up in Fig. 2.6, and suppose

¢ =0.

(a) Ignoring any effects of the mirrors M, show that the probabilities Pp and P; of the
photon being detected by DO and D1, respectively, are just 1 and 0. In other words,
there is constructive interference for DO and destructive interference for D1.

(b) Is your answer in part (a) changed if you take into account that reflection from a mirror
M introduces a phase shift of 7 into that beam?

See also Problem 2.1.

3 For simplicity we are neglecting other phase shifts due to the thickness of the glass. However, if these are
arranged to be integer multiples of 27, or if the beamsplitter is built so that all beams undergo exactly the same
phase shifts, these may be ignored.
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Matrix methods

At any stage of a Mach—Zehnder interferometer, the photon may be in one of two possible
beams. We have drawn our diagrams so that one beam is the “upper” beam and one is
the “lower” beam. Devices such as phase shifters and beamsplitters alter the probability
amplitudes of those beams in a linear way. This linearity is what permits us to describe the
transformations by matrices.

The physical situation is described by a column vector of probability amplitudes:

v:(Z). 2.9)

The various clements of an interferometer apparatus are described by matrices acting on
the amplitude vector v. The balanced beamsplitter of Eq. 2.8 is described by:

1 /1 1
m=;§<1_1) (2.10)

The subscript / indicates that the negative phase appears when the lower beam is reflected.
This beamsplitter transforms the amplitude vector v to a new vector v' according to

vV =Bv. (2.11)
A phase shifter can also be described by a matrix. Suppose the phase of the upper beam is
shifted by ¢. This can be represented by the matrix

i
Pu(e) = ( o ) 2.12)

and the amplitude vector transforms by v/ = P, (¢)v. Once again, the subscript u indicates
that the phase of the upper beam is shifted.

Exercise 2.6 Write down the matrices B, and P;(¢) describing a beamsplitter with the
opposite orientation (negative phase for upper beam reflection) and a phase shifter on the
lower beam.

The full-silvered mirrors that guide the beam around the interferometer introduce phase
shifts by 7 into the beam, so they can be represented by matrices

Mu,l = Pu,l(ﬂ). (213)

We finish our inventory with two very simple cases. First, we can imagine an arrangement

in which the beams are simply allowed to cross one another, without any beamsplitter
intervening. This just exchanges the upper and lower amplitudes, and so can be represented

X = 1 . (2.14)

Simplest of all is a part of the interferometer in which the beams are not affected by any
sort of optical element, and the amplitudes are unchanged. This is a sort of “device” as
well! Its (trivial) action is represented by the identity matrix:

10
1:(0]>. (2.15)
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B, P.(¢) X

Representations of various linear optical elements in an interferometer.

T

Nl
UL

The Mach-Zehnder interferometer. Compare Fig. 2.6.

1N

@/\
(D/\

Obviously, 1v = v for any amplitude vector v.

We can represent each of these graphically using a modification of our previous diagrams.
From now on we will draw the upper and lower beam paths as parallel lines, except where
they are brought together at a beamsplitter or a beam crossing. The photon is assumed to
go from left to right, see Fig. 2.7.*

What happens when the basic optical elements are assembled into a larger experiment?
In a diagram, we simply string the pieces together in sequence, as in Fig. 2.8. How can we
describe this sort of interferometer arrangement mathematically? Suppose a pair of beams
with amplitude vector v pass through three optical elements. The first is described by a
matrix R, the second by S, and the third by T. To find the final amplitude vector v/, we
must first multiply v by R, then by S, then by T:

v = TSRv. (2.16)

The effect of the entire complex apparatus is represented by a single 2 x 2 matrix, the
product TSR. This product is a sequence in time of successive transformations of the
amplitude vector for the beams, with the time order from right to left: R occurs first and T
occurs last. To put it another way, the order of the matrices in the product is the opposite of
the order of the corresponding elements in our left-to-right diagrams.

Exercise 2.7 Write down a matrix product that represents the Mach—Zehnder interferometer
shown in Fig. 2.8. (You may ignore the photon detectors at the end.)

4 Do not be worried by the fact that our beams no longer go in straight lines in our diagrams. The diagrams are
merely schematics of a real optical apparatus. But as a matter of fact, we can build interferometers in which the
beams are guided in curved paths by optical fibers.
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As you thought about Exercise 2.7, you may have noticed a difficulty. The two beams
strike two different mirrors, each of which yields a phase shift of 7. These reflections
happen at about the same time, as suggested in Fig. 2.8. In which order should we write
the corresponding matrices? Fortunately, it turns out that the order of these phase shifter
matrices does not matter. We will cast the relevant fact as an exercise:

Exercise 2.8 Suppose P and P’ are the matrices for two phase shifters. Show that P and P’
commute:

PP =P'P

when (a) the two phase shifters are applied to the same beam, and (b) the two phase shifters
are applied to different beams.

Some of the matrices commute with each other, but not all of them. For example:
Exercise 2.9 Show that

XP, () # Pu(m)X.
Explain in words why this makes sense.

The analysis of a two-beam interferometer system has now been boiled down to matrix
calculations. The translation between the physical apparatus and the mathematical expres-
sion is straightforward. The following exercise should give you some easy practice at these
calculations and translations. You will find more examples in the problems at the end of
the chapter.

Exercise 2.10 Verify the following matrix facts, and explain each one in words and pictures
as a fact about interferometer systems. (a) XX = 1. (b) B;B; = 1. (¢) B/P;(7)P,(71)B; =
—1. (d) B,P;(r)B; = X. (¢) B/P;(7)B, = P, ().

Because of the principle of superposition, any linear optical element will produce a linear
transformation on the input amplitude vector v, and can therefore be represented by a2 x 2
matrix R acting on v. But we saw in our analysis of beamsplitters that not all 2 x 2 matrices
could possibly correspond to an actual optical device. The reason was that some matrices
did not preserve the normalization of the probabilities. Which matrices R do preserve this
normalization, and so might correspond to actual devices?

First, we need to express the normalization requirement in terms of matrices. The
Hermitian conjugate operation is designated by the “dagger” symbol “ § . This indicates
the complex conjugate of the transpose of the matrix. Thus,

=(a* B*). (2.17)

Our normalization requirement for the probability amplitudes can then be written as

viv=1. (2.18)

(Note that we are equating the number 1 with the 1 x 1 matrix whose only entry is 1. This
is a harmless abuse of mathematical notation.)

EBSCO Publishing : eBook Academic Collection (EBSCOhost) - printed on 6/22/2020 11:19 PM via BROWN UNIVERSITY

AN

212277

Crhimarhar Raniamin Wactmaraland Mirhanl N * Nuan+tim Draracenc Cuectame  and Thfarmatinn



Copyright © 2010. Cambridge University Press. All rights reserved. May not be reproduced in any form without permission from the publisher, except fair uses permitted

under U.S. or applicable copyright law.

25

The photon in the interferometer

Exercise 2.11 Verify that this equation is the same as la|® + |/f5|2 =1.

The vector v = Rv contains the output amplitudes when the input is v. We are thus
requiring that (v')"v' = 1 for any input vector that has v'v = 1. In other words,

V)V =vIRTRv = 1. (2.19)

(We have used the fact that, for any complex matrices, (UV)" = VTUT. This, or at least the
corresponding fact for the matrix transpose, should be familiar.)
We can view Eq. 2.19 as a property of the matrix RTR. Let

R*R:(q r). (2.20)

s t

What can we say about these matrix elements? First, consider an input amplitude vector
v =(})- Then

_ q r 1
vIR'Rv = (1 0)(S t><0>=q. (2.21)
So Eq. 2.19 tells us that g = 1.

Exercise 2.12 Verify Eq. 2.21, and then repeat the calculation with v = ({) to show
that r = 1.

The two diagonal elements of R'R must both equal 1. What about the other two elements?
Ifwe letv = %(i), we have

(1 1)(1 ;ﬂ)(i>=l+%(r+s). (2.22)

Since this must equal 1, we know that s = —r. Finally, we recall that the amplitudes are
complex numbers, so that the input v = \/Li ( 1) is possible. This yields

i

- 1
VTR'RV=§(1 —i)(l ;)(1‘)=1+Fl’. (2.23)

viIRIRv =

N —

—r i
From this, we conclude that » = 0.

Exercise 2.13 Verify Eq. 2.22 and Eq. 2.23.

Putting it all together, we have shown that, if the matrix R is to preserve the normalization
of probabilities, it must have the property that

R'R =1. (2.24)

Matrices with this property are called unitary matrices. We have arrived at an important
general fact: Any physically possible linear optical element in a two-beam interferometer
is represented by a 2 x 2 unitary matrix.
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Exercise 2.14 Here is what we have proved: If R is to preserve the normalization of
probabilities for any input v, then it must be unitary.

Now you prove the (much casier) converse: If R is unitary, then it will preserve this
normalization for any input v. (Be sure that you understand the distinction between these
statements!)

We can further show that any unitary 2 x 2 matrix R may be physically realized as an
interferometer set-up made out of beam splitters and phase-shifters, see Problem 2.3.

Testing bombs

The components of an interferometer do not register the passage of a photon, so that
the photon remains informationally isolated. This is why the beams exhibit interference.
Consider, for example, the simplified Mach—Zehnder arrangement in Fig. 2.9. The photon
is introduced along the lower beam, so the input amplitude vector can be taken to be ((1))
If nothing else is introduced into the apparatus, the matrix describing the interferometer’s

effect is just
0 1
BB, = < 10 ) (2.25)

The output amplitude vector is thus

0 1 0 1
B;Buv=<_1 0><1>=<0>. (2.26)

Exercise 2.15 Check this matrix arithmetic.

Therefore, the photon will always reach the upper detector D0O. The probabilities are

outcome P
photon reaches DO 1
photon reaches D1 0.

There is constructive interference in the beam that leads to D0, and destructive interference
in the beam that leads to D1.

Now suppose that we change the interferometer slightly by sticking a hand into the lower
beam at the point A. For simplicity, imagine that the photon is absorbed if it hits the hand.

DO

Dl

(D/\
O:)A

Simplified Mach-Zehnder interferometer.
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This produces a physical change in the hand that could in principle be detected (“Ow!”).
Thus, the hand is a photon detector that measures whether or not the photon travels along
the lower beam at A.

This will, of course, destroy any interference cffects. If we send a photon into the
apparatus, it has a 50% probability of striking the hand. If it travels along the upper beam
instead, when it reaches the second beamsplitter it will be equally likely to go toward DO
and D1. In short, we have

outcome P

photon reaches DO 1/4
photon reaches D1 1/4
photon hits hand 1/2.

Notice that, by blocking one beam with a hand, we have actually increased the probability
that the photon is detected by D1.

This paradoxical result is the basis for a remarkable thought-experiment proposed by
Avshalom Elitzur and Lev Vaidman in 1993. Imagine a factory that produces a type of
bomb triggered by light. So sensitive is the trigger that the passage of a single photon
through its mechanism will explode a bomb.

Because of manufacturing defects, however, many bombs come off the assembly line
without working triggers. Photons pass through these mechanisms without being registered
at all, and the bombs arc duds. The factory managers want to be able tell for sure that at
least some bombs are in working order. How can they do this? Of course, if they send a
photon through a given bomb, and it blows up, then they can be sure that the bomb was in
working order — but they have also destroyed that bomb. What the managers want is a way
to identify bombs that are explosive, but are not yet exploded. Since the bomb triggers are
set off even by one photon, this appears impossible.

But in fact, the interferometer arrangement in Fig. 2.9 can do the job. A bomb is placed
at the point A and then one photon is sent through. If the bomb is a dud, it will not register
the passage of the photon, and there will be interference effects. If the bomb is working, it
will function as a photon detector on the lower path. The results are

Bomb is a dud Bomb is working
outcome P outcome P
photon reaches DO 1 photon reaches DO 1/4
photon recaches D1 0 photon recaches D1 1/4
bomb explodes 0 bomb explodes 1/2.

Suppose an unknown bomb is placed in the apparatus and one photon is sent through. If
the bomb explodes, then it was in working order, but this bomb is now lost. If the photon
is detected by DO, the test is inconclusive and may be repeated.” But if the photon ever
arrives at D1, then the managers know that the unexploded bomb is in working order, even
though the bomb never detects the passage of the photon.

5 If the photon always arrives at DO during many trials, the factory managers may confidently conclude that the
bomb is a dud.
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Qubits

Exercise 2.16 If you do not find the previous paragraph strange and disturbing, re-read it.

Exercise 2.17 Suppose the interferometer test is performed on a large number of bombs
from the factory. When the test is inconclusive on a particular bomb, it is repeated until the
bomb’s status is reasonably certain. What fraction of the working bombs are certified as
working but not detonated?

The Elitzur—Vaidman thought-experiment is a good example of the sometimes perplexing
behavior of quantum systems. It also illustrates why information is such a key idea in
quantum theory. Whether or not a working bomb actually detects a photon in a given trial,
its final state (intact or exploded) provides a record of which beam the photon has traversed.
That means that the photon was not informationally isolated in the apparatus, and so there
can be no interference between the beams.

2.2 Spin 1/2
.

Having analyzed in detail the problem of a single photon in a two-beam interferometer, we
are in a position to identify a few key ideas:

e At any point, the photon can be in one of two distinct beams. Linear superpositions of
the beams are also possible.

e The physical situation of the photon is described by a vector v of two complex probability
amplitudes. If a given beam has an amplitude o, then |«|? is the probability that a detector
would find the photon in that beam. Normalization of probabilities means that viv = 1.

e The cffect of a linear optical device like a phase shifter or a beamsplitter is described by
a matrix R. The amplitude vector v is changed to a new vector v/ = Ryv. The matrix R
must be unitary to guarantee that the final probabilities are normalized.

e Even a quantum system as simple as this can yield surprising results, as in the bomb-
testing thought-experiment.

In this section, we will apply these same ideas to a quite different type of quantum system.

Particles with spin

A particle has angular momentum by virtue of its movement through space. It may also have
an intrinsic angular momentum called spin. This term suggests an analogy to Newtonian
physics, in which the angular momentum of an extended body like the Earth is due to
both its translational and rotational motion. The quantum situation is a bit more subtle.
Electrons, for instance, appear to be entirely point-like, without any spatial extent at all.
We therefore cannot attribute the intrinsic spin of an electron to mere rotational motion.
Electrons, protons, and neutrons are all examples of spin-1/2 particles. Suppose we
measure the z-component S; of the spin angular momentum for one of these particles. The
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