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Preface

About Me

Hi! I’m Christian Zhou-Zheng, high school class of 2026 at The Pingry School, located in Basking
Ridge, New Jersey. I’m very STEM-focused, and I created this document in freshman year to keep
track of all my high school notes for such classes. I’m taking the most accelerated track possible in
each STEM field offered by the school (math, science, computer science), so this document should
hopefully still prove useful to others who are in the upper grades/taking highly rigorous courses.

How to Use This Document

Firstly: This is NOT intended to teach you material. This is a study guide. It evolved from a
collection of ”cheat sheets” of formulas and ideas, and its goal is to provide something to brush up
with when studying - just enough to stir your memory around that concept.

This is a collection of my notes from various STEM classes and personal research, first collated in
the spring of freshman year and therefore not containing absolutely everything. I will attempt to
update this on a rolling basis so all future topics will be covered, but I can’t be bothered adding
in all past topics. In addition, several sections are intentionally made to fit on only one page, for
ease of printing. However, some places may include external links to other resources, which may
be more in-depth.

Some important topics from just before this document was created (particularly basic algebra and
geometry/trigonometry) will be added, but the rest won’t. I’m also not currently particularly
willing to make or add graphs for most of these topics, nor the derivations - just the formulas. In
particular, the following will be missing from this document:

� Basic algebra (polynomials, functions, etc)

� Almost all geometry

� Basic trigonometry (SOHCAHTOA level stuff, simple definitions)

� All pre-calculus math up to limits

� Most early chemistry (pre-AP)

� All biology

� Basic computer science up to and including the AP Computer Science A curriculum
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Part I

Math

1 Precalculus - Honors

WARNING: This does not cover material before limits.

1.1 Limits

Limits are basically asking what the value of a point on a graph is as you get infinitely close to
that point from either side. We can think of a limit as the value we expect a function to be at
at a certain x-value, by extrapolating from its behavior on either side, even if the function isn’t
necessarily equal to that value at that x-value. We denote this for a function f(x) where the point
in question is a as:

lim
x→a

f(x)

An important question to ask first is that of continuity, where the definition for a graph being
continuous at x = a is:

f(a) = lim
x→a−

f(x) = lim
x→a+

f(x)

where limx→a−f(x) is the limit of f(x) approaching from the negative direction, and vice versa for
the positive. Basically, what this means is that f(x) doesn’t jump around or move unpredictably
around point a - it comes smoothly in, passes through point a, and goes smoothly out. This will
be important when we get to derivatives, which are closely related to limits.

Similarly, the limit from both directions - that is, limx→a f(x) - only exists when the following is
true:

lim
x→a−

f(x) = lim
x→a+

f(x)

Notice how f(x) doesn’t need to be equal - that means there can be a hole/discontinuity of the
function there and the limit will still exist! I would add graphs to visualize this but I’m too lazy.

It’s important to note, however, that while a can go to infinity, the limit itself cannot; you cannot
have the limit of a fuction be infinity (which makes sense when you think about it).

The first method you should always try to use to evaluate a limit is substitution - that is, just
plugging in a for x in f(x). This will allow you to identify and solve the two trivial types of limits.

The first trivial type: substituted away

The first trivial type can be solved with simple substitution for x - really, you don’t even need
to write this as a limit. For example, take f(x) = x2 + 2x − 3; evaluating limx→2 f(x) yields
limx→2[(2)2 + 2(2) − 3], which becomes just limx→2[5], and the limit of a constant is just that
constant - it won’t change with x! As such, this limit was no harder than a standard polynomial
to solve.
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The second trivial type: Does Not Exist/DNE

The second trivial type can easily be identified by substitution; a limit not existing can be seen
easily when the graph of the limit goes to ∞ or −∞. For example, limx→0 1/x yields 1

0 , clearly
inappropriate! As we’ll see soon, the limit is only DNE when the answer turns out to be a number
over 0 (or infinity); 0

0 is surprisingly existent, as are ∞0 and so on.

Non-trivial Limits and Indeterminate Form

If, after substitution, you get the answer 0
0 or ∞0 or so on, congratulations! You have to utilize your

neurons to work out a more accurate answer than this indeterminate form of the limit. Usually,
this happens because a is a factor of both the numerator and denominator; try various methods,
such as factoring, conjugation, combining fractions, etc. to reduce the function within the limit to
a point where substitution will provide a reasonable answer.

For example, evaluating limx→3

[
x2−9
x−3

]
results in attempting to take limx→3

[
0
0

]
, which means

there’s still more to be done! In this case, we can factor the numerator and cancel a x−3 term from
the numerator and denominator, resulting in the evaluatable limx→3(x+ 3) = 6 via substitution.

Do note that it is fallacious to call the functions you get equal, although the limits are. Apparently

the AP Calc test likes to take points off for this. For example, limx→3

[
x2−9
x−3

]
= limx→3[x+ 3], but

x2−9
x−3 6= x+ 3!

1.1.1 One-Sided Limits

Recall our definitions of continuity and limit existence. In particular, the limit existence from both
directions:

lim
x→a−

f(x) = lim
x→a+

f(x)

However, even if this doesn’t hold true, we can still evaluate the limit from one direction. This is
useful for points where:

� the function makes a ”jump”

� the function is not defined in one direction

� the function makes a sharp turn

Examples include limx→0
√
x, which must be evaluated from the positive direction, and limx→0

|x|
x ,

which can be evaluated from either direction. In the event that the limit must be evaluated only
from one direction, we must determine which direction to evaluate it from. Usually, this takes the
form of a sign chart.
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1.1.2 Limit Rules

lim
x→a

[c ∗ f(x)] = c ∗ lim
x→a

[f(x)]

lim
x→a

[f(x)± g(x)] = lim
x→a

[f(x)]± lim
x→a

[g(x])

lim
x→a

[f(x) ∗ g(x)] = lim
x→a

[f(x)] ∗ lim
x→a

[g(x)]

lim
x→a

[
f(x)

g(x)

]
=

limx→a[f(x)]

limx→a[g(x)]

lim
x→a

[f(x)]n = [ lim
x→a

f(x)]n

1.1.3 Limits to Infinity

For a rational function f(x), limx→∞f(x) depends on the highest degree term in the numerator
and denominator of the function f(x).

� If the degree of the numerator is higher than the degree of the denominator, the limit evaluates
to ∞ (or −∞ where applicable).

� If the degree of the denominator is higher than the degree of the numerator, the limit evaluates
to 0.

� If the degrees are equal, the limit evaluates to the quotient of the leading term coefficients.

1.1.4 Sums of Infinite Geometric Series

Yeah, I said I wouldn’t put AP/GPs in here but this counts as limits. tl;dr:

∞∑
k=1

a1r
k−1 = lim

n→∞

n∑
k=1

a1r
k−1 = lim

n→∞

[
a1 − a1r

n

1− r

]
for a1 being the starting term and r the common ratio.
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1.2 Precalculus Trigonometry

This is just a list of the formulas you learn in precalc trig. Polar coordinates are skipped because I
can’t be bothered with graphs.

1.2.1 Unit Circle Values

All values are in radians.

θ = 0 θ = π
6 θ = π

4 θ = π
3 θ = π

2

sin(θ) 0 1
2

√
2

2

√
3

2 1

cos(θ) 1
√

3
2

√
2

2
1
2 0

tan(θ) 0 1√
3

1
√

3 N/A

1.2.2 Trigonometric Identities

Basically everything can be derived from the Pythagorean identity and a few others.

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

cot2 θ + 1 = csc2 θ

1.2.3 Trigonometric Formulas

Angle Addition Formulas:

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

tan(α± β) =
tanα± tanβ

1∓ tanα tanβ

Double Angle Formulas: Derived by plugging in θ for α and β in the angle addition formulas.

sin(2θ) = 2 sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ

tan(2θ) =
2 tan θ

1− tan2 θ

Half Angle Formulas: Derived by plugging in 1
2θ to the double angle formulas and solving.

sin

(
1

2
θ

)
=

√
1− cos θ

2

cos

(
1

2
θ

)
=

√
1 + cos θ

2

tan

(
1

2
θ

)
=

√
1− cos θ

1 + cos θ

5



1.3 Non-Right-Triangle Trigonometry

Let triangle 4ABC have sides a, b, c where the side with a lowercase letter is opposite the angle
marked with the corresponding uppercase letter. This triangle must not necessarily be right.

These formulas are derived from splitting a triangle into two right triangles by using the height
from an adjacent angle, then using trigonometric functions/identities on that.

1.3.1 Law of Sines

sinA

a
=

sinB

b
=

sinC

c

Ambiguous Case: Since sinA is positive over all x ∈ [0, 180] degrees, there can be times where
sinA can take on two possible values when solving using the Law of Sines. In particular, this happens
in a triangle with two sides and an angle given in Side-Side-Angle format, in which angle A is
not opposite the longest side and the angle measure given is less than both A and 180 − A after
solving using Law of Sines.

1.3.2 Law of Cosines

Note that this is equal to the Pythagorean Theorem for C = 90◦, at which point cosC = 0.

c2 = a2 + b2 − 2ab cosC

cosC =
a2 + b2 − c2

2ab

1.3.3 Area of a Triangle

Side-Angle-Side Formula:

A4 =
1

2
ab sinC

where a, b are adjacent and C is the angle between the two.

Side-Side-Side (Heron’s) Formula:

A4 =
√
s(s− a)(s− b)(s− c)

s =
a+ b+ c

2

where s is also known as the semiperimeter.
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1.4 Vectors

1.4.1 Precalculus Vectors

Honors Precalculus vectors are slightly different than physics vectors. I’ve written much on the
latter, so there’s significant overlap.

Vectors are defined by a magnitude (represented as ‖w‖, also called the vector’s norm) and
direction. A vector goes from the starting point to the terminal point. They can be represented
in geometric form ( ~A) or with bold lowercase letters (u). Two vectors with the same magnitude
and direction are equivalent, regardless of origin - vectors contain no information about location!

1.4.2 Component Form

Vectors are often written as if the starting point was the origin, represented only by the coordinates
of its (adjusted) terminal point. This component form is denoted 〈x1, x2〉. For a vector going
from starting point (x1, y1) to terminal point (x2, y2), its component form is:

〈x2 − x1, y2 − y1〉

1.4.3 Linear Combinations

For vector addition, please see the physics section on vectors. Multiplying a vector and scalar
multiplies all of the individual components of the vector by the scalar (1D) quantity. Combining
these produces linear combinations of vectors. For example, for two vectors u = 〈4, 1〉,v = 〈2, 3〉:

u + v = 〈(4 + 2), (1 + 3)〉 = 〈6, 4〉

2u = 〈(2 ∗ 4), (2 ∗ 1)〉 = 〈8, 2〉
2u + 3v = 〈8, 2〉+ 〈6, 9〉 = 〈14, 11〉

Vectors can also have more than two components; they can have as many as you want! However,
you can only operate between vectors of the same dimension (same number of components), except
for 1D scalar quantities, which can be multiplied against any dimension of vector. Operations on
these linear combinations through vector addition and scalar multiplication follow the same rules
as arithmetic addition and multiplication.

1.4.4 Unit Vectors

A unit vector is a vector of magnitude 1 in the direction of another vector ~v, denoted v̂ (”v-hat”).
The unit vector of any vector can be found by dividing the vector by its magnitude; for example,
the vector 〈3, 4〉 has a magnitude of 5 and unit vector

〈
3
5 ,

4
5

〉
.

The unit vectors parallel to the axes are called the standard unit vectors and denoted î and
ĵ in the x- and y-directions, respectively. Any vector in component form can be written as a
linear combination of the standard unit vectors. Similarly, vectors can be expressed using their
magnitudes and angles. Examples of both follow:

〈x, y〉 = xî+ yĵ

~v = 〈‖v‖ cos θ, ‖v‖ sin θ〉 = ‖v‖(cos θ)̂i+ ‖v‖(sin θ)ĵ

7



1.4.5 Vector Multiplication: Dot Product

One form of vector multiplication is called the dot product, which results in a scalar quantity.
The dot product of two vectors u and v is denoted u · v and is defined as:

u · v = 〈u1, u2〉 · 〈v1, v2〉 = u1v1 + u2v2

Deriving from the Law of Cosines, treating the sides of a triangle as vectors, we also get:

u · v = ‖u‖‖v‖ cos θ

where θ is the angle between the vectors. Therefore, solving for θ results in:

θ = cos−1

(
u · v
‖u‖‖v‖

)
= cos−1

(
u · v√

u · u
√

v · v

)

The dot product is commutative and distributive. The dot product of a vector and itself is also
equivalent to the magnitude of the vector, regardless of how many dimensions the vector has!

Orthogonal vectors are vectors that are perpendicular to each other. The dot product of two
orthogonal vectors is 0, and the dot product of a vector and its unit vector is 1, since cos θ is 0
when two vectors are perpendicular (θ = 90◦) and cos θ is 1 when two vectors are parallel (θ = 0◦).

1.4.6 Vector Multiplication: Cross Product

This isn’t in precalculus (you don’t actually get here for years) but it’s worth mentioning while we’re
at vectors. The other form of vector multiplication is called the cross product, which results in a
vector that is perpendicular to both of the original vectors. The cross product is only applicable in
three dimensions. The cross product of two vectors u and v is denoted u× v and is defined as:

u× v = 〈u1, u2, u3〉 × 〈v1, v2, v3〉 = 〈u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1〉

Alternatively, you can use the magnitudes and angles of each vector, and the unit vector perpendicular
to the plane containing both:

u× v = ‖u‖ ‖v‖ sin θn̂

The perpendicular unit vector n̂ can be found using the right hand rule: point your index finger in
the direction of vector u, your middle finger in the direction of vector v, and your thumb will point
in the direction of n̂.

The cross product is anticommutative (that is, a×b = −b×a) and distributive. The cross product
of a vector and itself is 0, and the cross product of a vector and its unit vector is the vector itself.
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2 Calculus

2.1 Derivatives

Remember that the derivative of a function at a point is its instantaneous rate of change - that
is,

f ′(x) = lim
h→0

f(x)− f(x− h)

h
You could also describe it as the slope of the tangent line, the slope of a secant line as the distance
between the intersection points approaches 0, etc. Usual notation for the derivative of f(x) is f ′(x)
(or f(x)′), pronounced ”f prime of x,” or d

dxf(x), meaning ”the derivative of f with respect to x.”

2.1.1 Derivative Identities

For some constant a:
d

dx
a = 0

d

dx
x = 1

d

dx
ax = a

d

dx
(af(x)) = a

d

dx
f(x)

Exponential and Logarithmic Functions:

d

dx
en = en

d

dx
ax = ln(a)ax

d

dx
ln(x) =

1

x
d

dx
loga(x) =

1

xln(a)

Trigonometric Functions:
d

dx
sin(x) = cos(x)

d

dx
cos(x) = − sin(x)

d

dx
tan(x) = sec2(x)

d

dx
csc(x) = − csc(x) cot(x)

d

dx
sec(x) = sec(x) tan(x)

d

dx
cot(x) = csc2(x)

9



Inverse Trigonometric Functions:

d

dx
sin−1(x) =

1√
1− x2

d

dx
cos−1(x) = − 1√

1− x2

d

dx
tan−1(x) =

1

1 + x2

d

dx
csc−1(x) = − 1

|x|
√
x2 − 1

d

dx
sec−1(x) =

1

|x|
√
x2 − 1

d

dx
cot−1(x) = − 1

1 + x2

2.1.2 Power Rule

d

dx
xn = nxn−1

If you have the time, try deriving this yourself. (Hint: binomial expansion!)

2.1.3 Properties of Derivatives

For two functions f and g:
(f(x)± g(x))′ = f ′(x)± g′(x)

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)(
f(x)

g(x)

)′
=
f ′(x)g(x)− g′(x)f(x)

g(x)2

2.1.4 Chain Rule

The chain rule applies to compositions of functions, such that the derivative of f(g(x)) for two
functions f and g is:

f(g(x))′ = f ′(g(x))g′(x)

Or in Leibniz’s notation:
dy

dx
=
dy

du

du

dx

2.1.5 Implicit Differentiation

Implicit differentiation is the differentiation of an equation in which y cannot be isolated - for
example, x3 +xy+y3 = 1. To differentiate implicitly, treat y as a function of x (and x as a function
of x, for the purpose of things like the product rule) and differentiate both sides of the equation
with respect to x, using the chain rule where necessary to introduce dy

dx terms. The above equation

would become 3x2 + y + x dydx + 3y2 dy
dx = 0. Then, solve for dy

dx .
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2.2 (Indefinite) Integrals

Remember that there are two types of integrals - definite integrals, which can be thought of over
the real plane as the area under a curve between two points a and b, and indefinite integrals, which
are just antiderivatives. The fundamental theorem of calculus states that, for some function
f with antiderivative F : ∫ b

a

f(x) = F (b)− F (a)

So then it becomes a matter of finding said antiderivative. Notice that nowhere in this does anything
on F between a and b matter!

2.2.1 Integral Identities

Basic Identities: ∫
a dx = ax+ C∫

c ∗ f(x) dx = c ∗
∫
f(x) dx∫

1

x
dx = ln|x|+ C

Exponential and Logarithmic Functions:∫
ex dx = ex + C

∫
ax dx =

ax

ln(a)
+ C∫

ln(x) dx = xln(x)− x+ C

Trigonometric Functions: ∫
sin(x) dx = − cos(x) + C∫
cos(x) dx = sin(x) + C∫

tan(x) dx = ln| sec(x) + C|∫
csc(x) dx = ln| csc(x)− cot(x)|+ C = ln| tan(

x

2
)|+ C∫

sec(x) dx = ln| tan(x) + sec(x)|+ C∫
cot(x) dx = ln| sin(x)|+ C

11



Inverting the others... ∫
sec2(x) dx = tan(x) + C∫

csc2(x) dx = − cot(x) + C∫
sec(x) tan(x) dx = sec(x) + C∫

csc(x) cot(x) dx = − csc(x) + C

2.2.2 Power Rule ∫
xn dx =

xn+1

n+ 1
+ C

2.2.3 Properties of Integrals

For two functions f and g: ∫
(f ± g) dx =

∫
f dx±

∫
g dx

2.2.4 Integration by Substitution

This is just the reverse chain rule. For two functions f(x) and g(x), write the equation as:∫
f(g)g′ dx

And replace g with some temporary variable u. The equation then becomes:∫
f(u) du

which can be integrated and then u replaced by g after integration.

2.2.5 Integration by Parts

For two functions u and v: ∫
u v dx = u

∫
v dx−

∫
u′
(∫

v dx

)
dx

2.2.6 Taylor Series

A Taylor series is a way to approximate a function f(x) around a point a by using the function’s
derivatives. The Taylor series of f(x) around a can be expressed as either of:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

∞∑
n=0

f (n)(a)

n!
(x− a)n

12



3 Multivariable Calculus

3.1 Vector Calculus

This is copies of just formulas taken from Introduction to Vector Analysis, fifth edition, Davis and
Snider. I won’t explain them yet, but might add that later.

3.1.1 Vectors

~A · ~B = ‖ ~A‖‖ ~B‖ cos θ =
∑

AiBi

~A× ~B = ‖ ~A‖‖ ~B‖ sin θn̂ =

∣∣∣∣∣∣
î ĵ k̂
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
[ ~A, ~B, ~C] = ~A · ( ~B × ~C) = ( ~A× ~B) · ~C =

∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
B‖ =

~A · ~B
~A · ~A

~A

B⊥ =
( ~A× ~B)× ~A

~A · ~A

3.1.2 Scalar and Vector Fields

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

grad φ = ∇φ

The gradient is the maximum rate of change and direction of that change of a scalar field φ at a
point. It is a vector field.

div ~F = ∇ · φ

The divergence is the net outflux of a vector field ~F per unit volume. It is a scalar field.

curl ~F = ∇× ~F

The curl is the circulation of a vector field ~F per unit area. It is a vector field.

The integral theorems relating these:∫ Q

P

∇φ · d~R = φ(Q)− φ(P )

∫∫∫
D

∇ · ~F dV =

∫∫
S

~F · ~n dS∫∫
S

∇× ~F · ~n dS =

∫
C

~F · d~R
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Vector identities and associated potential theorems:

∇×∇φ = 0 so ∇× ~F = 0 =⇒ ~F = ∇φ

∇ · ∇ × ~G = 0 so ∇ · ~F = 0 =⇒ ~F = ∇× ~G

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C so ∇× (∇× ~F ) = ∇(∇ · ~F )−∇2 ~F

There’s a lot more I could put in, but this is just from the reference sheet at the front of the book
- considering I don’t do multivariable calculus in high school, I won’t be putting much of it here.
I highly recommend the book - it’s excellent if you have a background with vectors and partial
derivatives.
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Part II

Physics

4 AP Physics B

This is the material I studied freshman spring to skip Physics 1/Honors directly into AP Physics
C - Mechanics. The textbook used was an old 2004 Physics B prep book, specifically Mooney’s
Physics B; I may reference diagrams from the text because I can’t be bothered putting them in
here.

4.1 1D Motion and Basic Kinematics

In basic kinematics, we can ignore air friction and round the force of gravity from 9.8m/s2 to
10m/s2. 1D motion involves three main concepts: displacement, velocity, and acceleration.

Displacement, ∆x or just s, is a measure of the change in x-position between time t0 and t
(hence ∆ for change). The standard AP unit is meters.

Velocity can be thought of as the derivative of displacement: the rate of change of an object’s
position. The standard AP unit is meters per second.

Acceleration can be thought of as the derivative of velocity, or the second derivative of displacement:
the rate of change of an object’s velocity, or the rate of change of the rate of change of an
object’s position. The standard AP unit is meters per second per second, or meters per second
squared.

4.1.1 Symbols

The symbols typically used to represent a 1D system are:

� v - velocity

� v0 - starting velocity at time t0

� a - acceleration

� t - time

� ∆x - displacement

� ∆t - change in time from time t0 to t

� ∆v - change in velocity from time t0 to t

15



4.1.2 Average/Instantaneous Velocity/Acceleration

The average velocity or acceleration over a period of time from t0 to t is given as follows:

vavg =
∆x

∆t

aavg =
∆v

∆t

The instantaneous velocity or acceleration (derivative/tangent line!) is given as follows:

vinst = lim
∆t→0

∆x

∆t

ainst = lim
∆t→0

∆v

∆t

4.1.3 Constant Acceleration Equations

Acceleration is rarely zero; usually it is constant, and therefore the velocity changes over time.
This slightly complicates things with measuring displacement, but luckily we have a system of four
handy equations to help us with this: 

v = v0 + at

∆x = 1
2 (v + v0)t

∆x = v0t+ 1
2at

2

v2 = v2
0 + 2a∆x

This is the order I learned them in and there’s a good chance I’ll refer back to them by number
later on.

4.1.4 Law of Odd Numbers

This wasn’t actually taught in the course but I stumbled across it doing practice problems.

Newton derived this law that states that the ratio of distances traveled in equal times are
proportional to the odd numbers: e.g. a ball travels 5 m in the first second (t0 → t1), 15 m in
the second second (t1 → t2), 25 m in the third second (t2 → t3), and so on; these values are in the
ratio 1 : 3 : 5 : .... This is handy for ”an object traveled x distance in the tth second, how far will
it travel in the nth second?” problems and the like.
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4.2 2D Vectors

Physics vectors are slightly different than precalculus vectors. I’ve written much on the latter, so
there’s significant overlap.

A vector is a representation of 2D motion - it has a magnitude, which indicates its ”length,” and
an angle, which indicates its direction (this angle is usually measured from the positive x-axis, like
most trig). This is as opposed to scalar quantities, which only have a value - examples include
velocity and acceleration.

Vectors are written as ~A, while their magnitude is expressed as A (no arrow) and their angle as θ.

The negative of vector ~A is a vector with the same angle θ but opposite magnitude.

4.2.1 Vector Components

As a 2D quantity, vectors naturally have x- and y-components. Although vectors are usually
expressed in polar form, with a magnitude and angle (m, θ), they can also be simply separated into
the x- and y- components, denoted as Ax and Ay:{

Ax = A cos θ

Ay = A sin θ

Of course, you can convert component form back into polar form, like so:A =
√
A2
x +A2

y

θ = tan−1
(
Ay

Ax

)
with respect to the fact that tan−1 only produces values between

[
−π2 ,

π
2

]
and the resulting angle

may need to be corrected by a factor of π radians.

4.2.2 Vector Addition and Subtraction

Vector multiplication is not required to skip into AP Physics at Pingry, so that won’t be covered
here. However, vector addition is simple enough: you effectively lay the ”tail” of one vector to the
”head” of another, and chain this for as many vectors as you add; finally, determine the vector from
the original tail to the final head. Notice that the order doesn’t matter!

More simply, we can just add the x-components and y-components individually, adding
two vectors ~A and ~B to create a vector ~C:{

Cx = Ax +Bx

Cy = Ay +By

Similarly, subtraction can be done by subtracting ~B’s x- and y-components from those of ~A.
Remember that subtracting is just adding the negative, and we know that − ~B is just ~B with
the same angle but opposite magnitude.{

Cx = Ax −Bx
Cy = Ay −By
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4.3 Projectile Motion

When evaluating projectile motion in the AP Physics curriculum, we simplify a lot. We disregard
air resistance, so the x-velocity remains constant until the projectile hits a surface; the y-velocity is
always the force of gravity, which on Earth is simplified to 10m/s2. As such, we can calculate the
horizontal and vertical components of the projectile’s trajectory separately. However,
be careful to write with the correct subscripts for x- and y-displacement and velocity.

4.3.1 Horizontal Equations

These are incredibly simple, because the x-velocity doesn’t change after the projectile has been
projected. {

∆x = vx0t

vx = vx0

4.3.2 Vertical Equations

Let g be 10m/s2 in the positive direction (hence the negative). Notice that these are just the
constant acceleration equations, since the force of gravity is constant acceleration! In other words,
ay = −g. 

vy = vy0 − gt
∆y = 1

2 (vy + vy0)t

∆y = vy0t− 1
2gt

2

v2
y = v2

y0 − 2g∆y

Using the horizontal equation to resolve the time variable in the third vertical equation, we can
derive a formula for y-position given the other factors:

∆y = vy0

(
∆x

vx0

)
− 1

2
g

(
∆x

vx0

)2

If the origin is the release point, ∆x = x and ∆y = y. This results in a quadratic, indicating that
the path of a projectile ignoring air resistance models a parabola:

y =

(
− g

2v2
x0

)
x2 +

(
vy0

vx0

)
x

This is a pretty impractical equation for use, and you needn’t memorize it. However, it serves nicely
to emphasize that the path of an ideal projectile is a parabola.
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4.4 Newton’s Laws

Newton’s three laws of mechanics, and the idea of force, are what underpin the entirety of classical
mechanics.

4.4.1 The First Law

The first law states:

An object at rest will remain at rest, or if it is in uniform motion, it will

continue as such unless acted upon by a net force.

This is called inertia. Larger (strictly, more massive) objects have more inertia. The first law
dictates that changes in velocity are caused by forces; we know that change in velocity must
mean acceleration, so forces must be tied to acceleration. Note that inertia is a property of matter,
not a force itself.

4.4.2 The Second Law

~F = m~a

The second law relates the net force, the vector sum of all forces, to the acceleration of a system.
Strictly, the net force on an object/system is equal to the mass of the object/system
multiplied by its acceleration. The unit of measure used in the AP curriculum is the Newton, N;
this is kilograms times acceleration, which is kg∗m

s2 . Remember that since this is a vector equation,
it in fact comprises two equations: {

netFx = max

netFy = may

Note that the m used in the second law equation and the m used in the definition of the newton
are different: the former means mass, while the latter means meters.

4.4.3 The Third Law

Possibly the most famous of Newton’s three laws. The third law dictates the interactions between
two systems, stating that:

When an interaction takes place between two systems, each system exerts a force on

the other, and these two forces are equal in magnitude and opposite in direction.

These forces are sometimes called a action-reaction pair. The third law is the backbone of most
movement; it’s how you walk, even!
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4.5 Forces Overview

Forces can be divided into two types: contact forces, which involve two systems physically touching,
and noncontact forces, which involve two systems not physically touching.

4.5.1 Normal Force

The first contact force is the normal force ~N , the force between two surfaces that acts perpendicular
to the surface; it’s what allows an object to rest on another. For example, a ball resting on a table
is pushing down on the table with its weight, and the table is pushing back up with an equivalent
force; this is why the ball doesn’t sink into the table!

4.5.2 Friction

The second contact force is the friction force ~f , the force between two surfaces that acts parallel
to the surface. The two types of friction are static (~fs) and kinetic ( ~fk); the former is when the
two surfaces experience a force but don’t actually move (e.g. rubbing rubber against rubber), while
the latter is when two surfaces experience a force and slide over each other (e.g. rubbing metal on
metal).

Kinetic Friction: Kinetic friction is produced any time two surfaces are sliding over each
other. The amount of kinetic friction produced is directly correlated to the normal force, effectively
how hard the surfaces are pressed into each other. Strictly, the magnitude of the kinetic friction is:

fk = µkN

where µk is the coefficient of friction between the two surfaces; think of this as a measurement of
how slide-y they are against each other. N is the normal force, not a measure in Newtons!

Static Friction: Static friction is slightly different than kinetic friction. At an angle, an object at
rest on a surface won’t move until the surface reaches a certain angle; this is called the angle of
repose, and this is caused by static friction. The magnitude of the maximum static friction is:

fs ≤ fmaxs = µsN

where µs is the coefficient of static friction, generally greater than µk. N is again the normal
force, not a measure in Newtons. fmaxs is only the maximum value for fs, the actual static friction
experienced by an object, which in turn is only enough to offset the force in the other
direction. For example, if a box is being pushed with 15 N of force and fmaxs = 30 N, fs = 15!

4.5.3 Tension and Compression

The third contact force, tension, is the pulling force exerted on an object by a rope or rod.
Relatedly, compression is the pushing force exerted on an object by a rigid rod; ropes can’t push.
Ropes and rods are ideal and massless in AP Physics. Both tension and compression affect both
involved objects equally, and are always directed along the rope or rod. The tension force is seen
much more often than compression, and it’s important to note that the tension force stays the same
on a single rope across any pulleys it’s attached to (pulleys are ideal, frictionless, and massless in AP
Physics). In fact, just draw the free-body diagrams for each object (next section!) with the rope’s
angle at the attachment point to the object, and completely disregard any intermediate pulleys.

20



4.5.4 Spring Force

The last contact force is the spring force, the force exerted by a spring on the attached object.
Hooke’s Law defines the spring force as:

~F = −kxû

where F is the force, k is the spring constant, x is the displacement, and û is the unit vector in
the direction of the spring. The spring force is always directed opposite to the displacement of the
object from its equilibrium position. You might see Hooke’s Law without the û, in which case it’s
assumed that the spring is in the x direction.

When calculating x, remember that the spring itself also has a ”default”, or nominal, length L0;
the total length L of a spring is equal to the nominal length plus the displacement, or L = L0 + x,
where positive x is extension and negative x is compression.

The stress and strain are also important spring-related concepts, although they aren’t entirely
required. Stress is the force applied per unit area, and strain is the ratio of the change in length
∆L to the original length L0. These tie into deformation, of which there are two types: elastic
deformation is when the object returns to its original shape after the force is removed, and plastic
deformation is when the object does not return to its original shape after the force is removed.
Plastic deformation occurs when excessive stress is applied to a material; the minimum level of
stress required to plastically deform a material is that material’s elastic limit.

4.5.5 Gravity

The only non-contact force in the AP Physics - Mechanics curriculum is gravity, the attraction
between any two objects. (We’ll be back to this later.) The gravitational attraction between the
Earth and an object near it is called the object’s weight, defined as W = mg (mass * gravity).

4.5.6 Statics, Equilibrium, and Dynamics

Statics is the study of forces in equilibrium; in turn, equilibrium is when the net force on an
object is zero. In the next section on free-body diagrams, you’ll start with examples of statics.
Recall Newton’s second law, netF = ma; in equilibrium, netF = 0, meaning that a = 0 and all
forces in the x- and y-directions cancel each other out. Statics are much simpler to solve because
of this cancelling.

Dynamics is the study of forces in motion. In dynamics, netF 6= 0, meaning that a 6= 0 and not
all forces in the x- and/or y-directions cancel each other out. Dynamics are more complicated to
solve because of this lack of cancelling, and you will need to account for the mass and acceleration
of each object in the physical system being analyzed.

Do remember that the equation is netF = ma, not netF = Wa; mass (in kg) is not the same as
weight (in N), although a weight in Newtons is sometimes provided! Be wary around the difference
between mass and weight.
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4.6 Free-Body Diagrams

A free-body diagram is a diagram of a single object in a physical system that depicts all force
vectors acting upon it as arrows coming out of the object. A single system can have dozens of
free-body diagrams drawn for it, as many as the number of objects in the system. Since these are
obviously graphical representations, it’s hard to put them into this document. See the textbook.

4.6.1 Analyzing Physical Systems

1. Draw a free-body diagram for each object.

2. Add and label arrows for all forces ON each object.

3. Choose axes such that the number of forces acting on each axis is maximized (this is usually
the basic axes, or in an inclined plane problem, the axes of the plane).

4. Resolve forces not along the axes into their components along each axis.

5. Determine the sum of all force components on each object in each direction, resulting in netFx
and netFy for each.

6. Apply the second law to equate the sum of force components to max and may.

7. Solve the resulting system of equations.

4.6.2 Inclines and Axes

In certain scenarios, the default horizontal and vertical axes are inefficient; the most common
example of this is on an inclined plane. In this case, it makes sense to change x- and y-axes such
that the x-axis is parallel to the incline and the y-axis perpendicular, so friction and acceleration
have only x-components and the normal force only a y-component.

Any forces not acting parallel to an axis must be decomposed into their components along the axes.
Weight is one such force; however, the decomposition is the same each time:{

Wx = mg sin θ

Wy = mg cos θ

4.6.3 Pulleys and Sign Conventions

Solving free-body diagram equations is confusing if you don’t adopt consistent sign conventions. A
sign convention means that every force in an arbitrary direction is marked positive, and forces
in the other direction are marked negative. Since you should have broken down all forces into their
components along the axes, there should only be 2 sets of positives and negatives. For example,
with up being positive, a force of 5 N up added to a force of 2 N down is 5 + (−2) = 3 N.

Selecting sign conventions is particularly important when working with pulleys, where rotation in a
certain direction about the pulley must always be considered positive (standard is counterclockwise).
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4.7 Forces in Free-Body Diagrams

4.7.1 Tension of Multiple Ropes

When examining an object with multiple tension forces, simply break up each tension force into
its component vectors and solve. For example, for a box suspended by two ropes at angles of θ
and φ degrees respectively, break each down into their component vectors, equate them to 0 (in
equilibrium) or ma (not in equilibrium), and solve the system.

For an object suspended by multiple ropes in the same direction, the tension force is equally split
across each rope, regardless of what it’s attached to.

4.7.2 Tension of Accelerating Objects

For the simplest example of tension, a static object only supported by a rope, the tension force T
only has to counterbalance the weight, such that T = W = mg. So what happens if the object is
accelerating? Remember that F = ma; in the former example, a = g, so we could substitute it.
However, when the object is accelerating, a 6= g; rather, a = anet, where anet is the net acceleration
of the system. Therefore:

T = manet

If the object is affected by gravity (which it likely is), then anet = aext+g, where aext is the external
acceleration of the object in the direction of the rope. Therefore, the tension force is:

T = m(aext + g)

4.7.3 Gravity and Applied Weight

Solving the aforemetioned system of an object supported by a rope yields the equation W = mg:
an object’s weight is equivalent to its mass times the force of gravity.

In a vertically accelerating object, such as a person inside a moving elevator, the applied weight on
the object differs from its weight in a static system. Specifically, the applied weight is:

wapp = w −ma = mg −ma = m(g − a)

For example, a person with weight 60 kg would have weight W = mg = 60 ∗ 10 = 600 N in a static
system, but if they accelerate at 5m/s2 upward, they would have applied weight wapp = m(g−a) =
60(10 − (−5)) = 60 ∗ 15 = 900 N. The acceleration force is negative here because it acts in the
opposite direction of gravity, which the sign convention here dictates is positive.

4.7.4 Depression of a Rope

I don’t think this is on the AP curriculum, but I stumbled across this on my own. For a horizontal
flexible rope with a force F⊥ pushing down on the middle, the tension in the rope with angle of
depression θ is:

T =
F⊥

2 sin θ
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4.8 Torque

Torque is a measure of the rotational force applied to an object. It is denoted with tau τ and
defined as:

τ = rF sin θ

where r is the distance from the pivot point to the point of force application, F is the force applied,
and θ is the angle between the force and the lever arm. The lever arm is the shortest distance from
the pivot point to the line of action of the force.

4.8.1 Balancing Torques and Rotational Equilibrium

In order for an object to be in rotational equilibrium, the sum of the torques on the object must
be 0. This is because if the sum of the torques is not 0, then the object will rotate in the direction
of the net torque. Therefore, the sum of the torques on an object is 0:∑

τ = 0

This is analogous to the sum of the forces on an object being 0 for translational equilibrium.

To balance torques on an object, take a pivot point, and sum the torques on the object about that
pivot point. For example, if a rod is suspended by a rope at its center, the torques on the rod are
balanced about the pivot point of the rope, since the torques on either side of the pivot point are
equal and opposite. Then, solve for the unknown variable.

4.8.2 Center of Mass

The center of mass of an object is the point at which the object’s mass is concentrated. For a
uniform object, the center of mass is the geometric center of the object. For a non-uniform object,
the center of mass is the weighted average of the object’s mass distribution. For example, the center
of mass of a meter stick is at its center, but the center of mass of a meter stick with a weight on
one end is closer to the end with the weight. The formula of this is:

xcm =

∑
mx∑
m

where xcm is the center of mass, m is the mass of a certain part of the object, and x is the distance
of that part from the origin. Torques act about the center of mass of an object.

24



4.9 Uniform Circular Motion

Uniform circular motion is the motion of an object in a circle at constant speed. Since the velocity
vector does not stay constant, the object is constantly accelerating, but the object’s speed remains
constant - this is because the acceleration is purely inwards, to maintain a circular trajectory. This
centripetal acceleration of an object in uniform circular motion is:

ac =
v2

r

where v is the speed of the object and r is the radius of the circle. The centripetal acceleration is
always directed towards the center of the circle. The centripetal force is the force that causes this
acceleration, and is given by:

Fc = mac = m
v2

r

4.9.1 Period and Frequency

The period of an object in uniform circular motion is the time it takes for the object to complete
one full revolution, denoted as T . The frequency of an object in uniform circular motion is the
number of revolutions the object completes per second. The period and frequency are related by:

f =
1

T

The units of the period are seconds, and the frequency is measured in Hertz (Hz), or 1
s .

Speed and period can be related as follows:

v =
2πr

T

4.9.2 Angular Quantities

Angular quantities are quantities that describe the motion of an object in a circle. The angular
displacement θ is the angle through which an object moves, measured in radians. The angular
velocity ω is the rate of change of angular displacement, measured in radians per second, and
calculated as ω = 2π

T . The angular velocity and angular acceleration are related to the linear
velocity and linear acceleration by:

v = rω

4.9.3 Banked Turns

A banked turn is a turn in which the road is tilted at an angle θ from the horizontal. The normal
force is split into two components: one perpendicular to the road, and one parallel to the road. The
perpendicular component is equal to the weight of the car, and the parallel component is equal to
the centripetal force. The normal force is given by:

N = mg cos θ

The centripetal force is given by:
Fc = mg sin θ
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4.10 Gravity

Newton’s universal law of gravitation states that every object in the universe exerts a gravitational
force on every other object. The magnitude of this force is given by:

Fg = G
m1m2

r2

where G is the universal gravitational constant, m1 and m2 are the masses of the two objects, and
r is the distance between the two objects. The direction of the force is always towards the other
object. The gravitational constant is given by:

G = 6.67× 10−11N ·m2

kg2

You can solve a lot of problems of orbital motion by relating centripetal force to the magnitude of
the force of gravity and solving for the unknown:

mv2

r
=
GMm

r2

For instance, for satellite orbits, when one mass is much larger than the other, the smaller mass
orbits the larger mass in a circle. Manipulating the above, the centripetal force is provided by the
gravitational force, and the speed of the satellite is given by:

v =

√
GM

r

It may also be sometimes necessary to replace v with 2πr
T . This yields:

4π2r3

T 2
= GM

This can then be manipulated as needed.

Manipulating the universal law of gravitation also gives the force of gravity on a planet:

g = G
M

r2
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4.11 Work and Energy

Work is the product of the magnitude of the displacement and the component of the force parallel
to the displacement. It is given by:

W = Fd cos θ

where F is the force applied, d is the displacement, and θ is the angle between the force and the
displacement. The units of work are Joules (J), or N ·m. Work is a scalar quantity.

The net work done on a system is given by:

Wnet = ∆KE =
1

2
mv2

f −
1

2
mv2

i

where KE is the kinetic energy of the system, m is the mass of the system, and vf and vi are the
final and initial velocities of the system, respectively. The net work done on a system is equal to
the change in kinetic energy of the system. The kinetic energy - that is, energy of motion of an
object - is given by:

KE =
1

2
mv2

4.11.1 Conservative Forces

A conservative force is a force that does the same work on an object regardless of the path taken.
Gravity and spring forces are examples of conservative forces. The work done by a conservative
force is given by:

W = −∆PE

where PE is the potential energy of the system. The potential energy of a system is the energy
the system will release when a force stops acting on it, such as the restoring forces of gravity or a
spring. The graviational and elastic potential energies are given by:

GPE = mgh

EPE =
1

2
kx2

where m is the mass of the object, g is the acceleration due to gravity, h is the height of the object,
k is the spring constant, and x is the displacement of the spring from its equilibrium position.

4.11.2 Nonconservative Forces

A nonconservative force is a force that does not do the same work on an object regardless of the
path taken. Friction is an example of a nonconservative force. The work done by a nonconservative
force is given by:

W = −∆PE + ∆KE

where PE is the potential energy of the system and KE is the kinetic energy of the system.
Examples of nonconservative forces include friction, in which the energy is ”lost” to heat, sound,
and other forms of energy.
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4.11.3 Conservation of Energy

The total energy of a system is the sum of the kinetic and potential energies of the system. The
total energy of a system is conserved under the action of a conservative force, meaning that it
remains constant. This is known as the law of conservation of energy. The total energy of a
system is given by:

E = KE + PE

When a conservative force acts on this system, KE can be changed into PE or vice versa, but the
total energy of the system remains constant. This can be written as:

Ei = Ef

where Ei is the initial energy of the system and Ef is the final energy of the system. In terms of
the change in KE and PE:

∆KE + ∆PE = 0

4.11.4 Power

Power is the rate at which work is done. It is given by:

P =
W

t

where W is the work done and t is the time taken. The units of power are Watts (W), or J/s.
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4.12 Momentum

Momentum is the product of the mass and velocity of an object. It is given by:

p = mv

In fact, Newton’s second law was originally written in terms of momentum:

F =
∆p

∆t

4.12.1 Conservation of Momentum

Like energy, momentum is a conserved quantity. The law of conservation of momentum states
that the total momentum of a system is constant. This can be written as:

pi = pf

where pi is the initial momentum of the system and pf is the final momentum of the system. In
terms of the change in momentum:

∆p = 0

4.12.2 Collisions

During a collision between two objects, momentum is conserved in each direction: the total
momentum in the x-direction is conserved, and the total momentum in the y-direction is conserved.
This can be written as:

pi,x = pf,x

pi,y = pf,y

In general, for two objects colliding in one dimension (and the same can be extended to each
dimension of a 2-dimensional problem):

m1v1,i +m2v2,i = m1v1,f +m2v2,f

Collisions can also be elastic or inelastic. Elastic collisions are those in which kinetic energy is
conserved, while inelastic collisions are those in which kinetic energy is not conserved. In elastic
collisions, you can also apply conservation of energy to solve the system.

4.12.3 Impulse

Impulse is the change in momentum of an object. It is given by:

J = ∆p = F∆t

where F is the force applied and ∆t is the time taken. Impulse is also equal to the area under a
force-time graph, for the same reason.
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4.13 Simple Harmonic Motion

elit
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4.14 Final Equations

4.14.1 1D Kinematics
v = v0 + at

∆x = 1
2 (v + v0)t

∆x = v0t+ 1
2at

2

v2 = v2
0 + 2a∆x

4.14.2 Free Fall
tpeak = v0

g

h =
v2y0

2g

vy = vy0 − gt
∆y = 1

2gt
2

4.14.3 Newton’s Laws

F = ma

W = mg

Weff = mg −ma
Ff,s ≤ µFN
Ff,k = µFN

T = manet

4.14.4 Equilibrium
Wy = mg cosθ

Wx = mg sinθ∑
F = 0∑
τ = 0

4.14.5 Uniform Circular Motion

ω = 2π
T

v = rω

ac = v2

r = rω2

Fc = mac = mv2

r

f = 1
T

T = 2πr
v

4.14.6 Banked Turns
tan θ = v2

rg

N = mg cosθ

Fc = mg sinθ

4.14.7 Gravity

G = 6.67× 10−11 N ·m2/kg2

Fg = Gm1m2

r2

v =
√

Gm
r

g = GM
r2

GM = 4π2r3

T 2

4.14.8 Work and Energy

W = Fd cosθ

Wnet = ∆KE = 1
2mv

2 − 1
2mv

2
0

GPE = mgh

EPE = 1
2kx

2

KE = 1
2mv

2

KEi + PEi = KEf + PEf

P = W
∆t

4.14.9 Momentum and Impulse
p = mv

pi,x = pf,x

pi,y = pf,y

I = ∆p = F∆t

4.14.10 Simple Harmonic Motion

F = −kx
T = 2π

√
m
k = 2π

√
l
g

x = A cos(ωt)

xmax = A

v = −vmax sin(ωt)

vmax = Aω

a = −amax cos(ωt) = −ω2x

amax = Aω2
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Part III

Computer Science

5 AP Computer Science A

5.1 Polymorphism

This is something I see a lot of people struggle on, so I’ll write out a handy chart here. This is
likely one of the only things from the APCSA curriculum that I’ll put in this article; the rest is
simple enough that I’ll tell you to just go Google it or something. Basic class structure, inheritance,
abstraction, all that you should just ask a teacher or consult the Internet.

Let subclass P inherit class O. On an object of type P declared as type O, like so:

O thisObj = new P();

Calling thisObj.N() for some method N() yields the following results, depending on which class(es)
implement it:

O implements N() O does not implement N()
P implements N() Runs N() from P Fails*
P does not implement N() Runs N() from O Fails (obviously)

*Unless thisObj is typecast to type P before calling, like so:

((P) thisObj).N();

This is a concept known as overriding (not to be confused with overloading, when multiple
functions are defined with the same name but different signatures). What happens is that at
compile-time, Java only ”adds” the functions defined in the class the object is declared as, but if
one of those functions has a different method body in the class the object is instantiated as, that
method body overrides the method body in the declared class and is run whenever that function
is called.
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